ответ:1) Пусть первый рабочий изготовил х (икс) деталей, тогда второй рабочий изготовил: (х · 5/6) деталей, третий рабочий: (х · 5/6 · 90/100) = (х · 3/4) деталей, а четвертый рабочий: (х · 3/4 – 8) деталей.
2) Зная общее количество изготовленных деталей, составим уравнение:
х + х · 5/6 + х · 3/4 + х · 3/4 – 8 = 152;
х + х · 5/6 + х · 3/4 + х · 3/4 = 152 + 8;
х · 12/12 + х · 10/12 + х · 9/12 + х · 9/12 = 160;
х · 40/12 = 160;
х · 10/3 = 160;
х = 160 : 10/3 = 160 · 3 : 10 = 48 (д.) – первый рабочий.
3) Найдем детали второго рабочего: х · 5/6 = 48 · 5/6 = 48 : 6 · 5 = 40 (д.).
4) Узнаем количество деталей третьего рабочего: х · 3/4 = 48 : 4 · 3 = 36 (д.).
5) Определим детали четвертого рабочего: х · 3/4 – 8 = 36 – 8 = 28 (д.).
ответ: первый рабочий изготовил 48 деталей, второй – 40 деталей, третий – 36 деталей, а четвертый – 28 деталей.
Пошаговое объяснение:
1)
2)
функция - не монотонная
экстремумы: (-6; 540), (8; -832)
3)
минимум f(4)= -1
максимум f(2)=3
Пошаговое объяснение:
1)
просто диференцируем по частям
2)
это производная исходной функции
как бы тут уже видно, что производная:
квадратичная парабола,
роги вверх,
знак меняет (а это значит, что исходная функция - не монотонная) в точках: x1 = -6; x2 = 8. это и будут точки экстремумов
минимум и максимум производной нас не интересуют
Решаем уравнение
3(x-8)(x+6) = 0
x1 = -6
x2 = 8
y1 = 540 = (-6)³ -3*(-6)² - 144*(-6) = -216 -108 + 864 = -324 + 864 = 540
y2 = -832 = 8³ -3*8² -144*8 = 8*64 - 3*64 - 144*8 = 5*8*8 - 144*8 =
= 8*(40-144) = 8*(-104) = -800 -32= -832
3)
f(2) = 4-16+15 = 3
f(5) = 25 -40 +15 =0
f'(x) = 2x-8
f'(x) = 0 при х = 4
f(4) = 16 - 32 +15 = -1
из f(2)=3, f(4)= -1, f(5)=0 выбираем минимум и максимум
минимум f(4)= -1
максимум f(2)=3
прим.: на втором таки уткнулся. противно его считать в голове. по быстрому там тупо решается квадратное уравнение через дискриминант на листике
3x-окунь
3x+17-лещ
2*(3X+17)-сазан
всего: 324
уравнение
x+ 3x+3x+17+2*(3x+17)=324
7x + 17+6x+34=324
13x +51=324
13x=324-51
13x=273
x=273: 13
x=21
3x=63
3x+17=80
2*(3x+17)= 160