Пусть Петя в первый день решил x задач. Тогда в оставшиеся дни он решил x + 2, x + 4, x + 6, x + 8 задач. Всего в сборнике оказывается 5x + 20 задач. Вася в первый день решил x – 1 задачу. В следующие дни он решал x, x + 1, x + 2, x + 3, x + 4, ... задач. За пять дней решить все задачи Вася не мог. Если Вася решил все задачи сборника за шесть дней, то он решил 6x + 9 задач. Уравнение 5x + 20 = 6x + 9 имеет решение x = 11. Тем самым приведен пример, удовлетворяющий условию: Вася решил в первый день 10 задач, Петя — 11 задач
1)Пирамида - многогранник, основание которого — многоугольник, а остальные грани - треугольники, имеющие общую вершину.
Площадь боковой поверхности правильной шестиугольной пирамиды формула:
, где a - сторона основания, b - боковая грань) 2) SK=10 — апофема, SH=8 — высота, НК — половина ребра основания. HK=√(SK2—HK2)=√(102—82)=6, Тогда ребро АВ=12. Площадь поверхности S=4⋅(SK⋅AB/2)+AB2=4⋅(10⋅12/2)+122=384
ответ: 384
Пошаговое объяснение:
?-5%
30*5/100=150/100=1,5