Уравнение 1.
Уравнение 1.(lg x)² - lg x - 6 = 0
ОДЗ : х > 0.
Пусть lg x = t, тогда по условию
t² - t - 6 = 0
D = 1 + 24 = 25
t1 = (1+5)/2 = 3
t2 = (1-5)/2 = - 2
Получили, что
1) lg x = 3, x = 10³ = 1000
или
2) lg x = - 2, x = 10^(-2) = 0,01.
ответ: 0,01; 1000.
Уравнение 2.
Уравнение 2.(log_2 x)² - 4•(log_2 x) + 3 = 0
ОДЗ : х > 0.
Пусть lg x = t, тогда по условию
t² - 4t + 3 = 0
D = 16 - 12 = 4
t1 = (4+2)/2 = 3;
t2 = (4-2)/2 = 1.
Получили, что
1) log_ 2 x = 3, x = 2³ = 8
или
2) log_2 x = 1, x = 2¹ = 2.
ответ: 2; 8.
А у-2 число
Составим уравнение:
х+у=715
x/10=y; (зачеркнуть последний ноль в числе - разделить его на 10)
Теперь решаем :
x +x/10 = 715
Умножаем все уравнение на 10, чтобы убрать дроби:
10x + x = 715011x = 7150
x = 650
y= x/10 = 650/10 = 65
650+65=715
ответ: 1 число - 650, 2 число - 65.