М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zaharkakorsunov
zaharkakorsunov
18.02.2022 11:41 •  Математика

На рисунке изображена фигура, №1, №2, №3 и №4 квадраты а №5 прямоугольник, периметр квадрата №1 32см, периметр квадрата №2 24, площадь квадрата №3 25см, площадь прямоугольника №5 - 133см2

👇
Ответ:
Котёнок0007
Котёнок0007
18.02.2022
Что найти то надо?
4,4(19 оценок)
Открыть все ответы
Ответ:
1) Найдите производную функции: а) у=х^5;  y'=5x^4
  б) y=3 ; y' = 0;  в) y=3-2x ; y' = -2,  г) y= 4/x ;   y' = -4/х^2; 
а) y = -x²- 8x + 2 

Найти производную


Приравнять производную к нулю и найти х, это будет точка экстремума
-2x - 8 = 0
2x = -8
x = -4

Функция y = -x²- 8x + 2  - квадратичная парабола, ветки направлены вниз, Значит, в точке   x = -4  будет максимум.

б) y = 15 + 48x - x³
Найти производную


Приравнять производную к нулю


Дальше можно через знак производной, либо через соседние точки

x = 4  Подставить в исходную функцию, а затем соседнее значение
 
Т.к. y(5) < y(4), значит функция y = -x²- 8x + 2  на интервале х∈[4; +∞) убывает, точка х = 4 является максимумом.

x = -4

Т.к. y(-5) > y(-4), значит функция y = -x²- 8x + 2  на интервале 
х∈(-∞;-4] убывает, точка х = -4 является минимумом
4,5(56 оценок)
Ответ:
arty181118
arty181118
18.02.2022

Пошаговое объяснение:

1) с первым интегралом все достаточно просто

здесь мы перейдем к повторным интегралам и получим вот что

\int\limits^3_1 {} \, dy \int\limits^1_0 {\frac{y^2}{1+x^2} } \, dx

сначала вычисляем внутренний интеграл

\int\limits^1_0 {\frac{y^2}{x^2+1} } \, dx = y^2arctgxI_0^1=\frac{\pi y^2}{4}

теперь вычисляем внешний интеграл

\int\limits^3_1 {\frac{\pi y^2}{4} } \, dy =\frac{\pi y^3}{12} I_1^3=\frac{13\pi }{6}

это и есть ответ  \frac{13\pi }{6}

2) со вторым придется построить графики, чтобы определить границы интегрирования по х

тут мы видим, что х изменяется  0≤х≤4

в общем-то нижний предел интегрирования можно было бы найти и путем выяснения, в какой точке пересекаются графики (через уравнение х/2 = х корень данного уравнения х=0), но лучше все же строить график

теперь, собственно приступаем к переходу и интеграции

\int\limits^x_{\frac{x}{2} } {} \, dy\int\limits^4_0 {(x^3+y^3)} \, dx

внутренний интеграл

\int\limits^4_0 {(x^3+y^3)} \, dx = \frac{x^4}{4} I_0^4+xy^3 I_0^4= 4y^3+64

внешний интеграл

\int\limits^x_{\frac{x}{2} } {(4y^3+64)} \, dy = y^4I_x^{\frac{x}{2}}+64yI_x^{\frac{x}{2}}=\frac{15x^4}{16}+32x}

ответ   \frac{15x^4}{16}+32x}


Вычислить двойные интегралы все задания
4,8(16 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ