№1. Площадь боковой грани (прямоугольный треугольник равными с катетами по 10 см) S₁ = 10 * 10 : 2 = 50 (cm²) В правильной треугольной пирамиде - ТРИ равных боковых грани S = 3S₁ = 3 * 50 = 150 (cm²)
№2. Боковая грань усеченной пирамиды - равнобокая трапеция, с основаниями а = 1, b = 9 и боковой стороной c = 5. Высоты трапеции, проведенные от меньшего основания к большему, разбивают его на отрезки 4, 1, 4. В прямоугольном треугольнике с катетом а = 4 и гипотенузой с = 5 c² = a² + h² h² = 25 - 16 h² = 9 h = 3 - высота трапеции
Площадь трапеции = полусумме оснований * на высоту
S₁ = * h S₁ = * 3 S₁ = 15 Площадь боковой поверхности усеченной пирамиды - три одинаковых грани (трапеции) S = 3S₁ = 3 * 15 = 45 (cm²)
Центральный угол, угол, образованный двумя радиусами некоторой окружности Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круга — o) на расстояние, не превышающее заданное (радиус круга). Дуга — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки A и B окружности разбивают ее на две части; каждая из этих частей называется дугой. круговой сектор-часть круга, лежащая внутри соответствующего центрального угла.
х=0 или -4х=-1
х=1/4
2) 2(х^2-4)=0
х^2=4
х=2; -2
3) Д= 5^2-4*1*6=25-24=1
х1,2=(5+-1)/2=3;2
4) х^27=0
х=0
5) х^2-27=0
х^2=27
х=корень из 27; минус корень из 27