Решить ! периметр прямоугольника 24 см. одна сторона этого прямоугольника имеет длину на 2 см больше, чем другая. найди длину каждой стороны этого прямоугольника
Если было поровну рыцарей и лжецов -значит их было четное количество. Когда первый из 2015 сказал: Когда я уеду, на острове станет поровну рыцарей и лжецов, он мог оказаться рыцарем, т.к. после его уезда оставалось четное кол-во человек (но мог быть и лжецом). Когда уезжал 2 человек и произносил эту фразу -он определенно был лжец, т.к. после его уезда оставалось 2013 человек-т.е. нечетное кол-во. Соответственно, каждый человек, который уезжал четным был лжецом. Выясним сколько их было: 2, 4, 6, , 2014 2014=2+(n-2)2 2012=(n-1)2 n-1=1006 n=1007 -лжецов было точно. Пройдемся от начала, с новой инфой, что лжецов было ≥1007.
1 случай. Если первый уезжающий -рыцарь, тогда из 2014 поровну рыцарей и лжецов, а также лжецов ≥1007, значит осталось 1007 рыцарей и 1007 лжецов. Тогда с учетом первого рыцаря на острове было: 1007+1=1008 рыцарей.
2.Случай. Если первый уезжающий -лжец. из 2014 человек лжецов>1007, а рыцарей <1007. Всего лжецов уже >1008 (из 2015 человек) 3ий уезжающий оставил после себя 2012 человек т.к. лжецов уже >1008, поровну уже ни при каком случае не получится. (т.к. чтобы из 2012 чел было поровну и л и р, их должно быть по 1006, из 2010 -1005 и меньше,) Таки образом, последний человек который был 2015 по счету -был рыцарем, так как после него осталось равное кол-во лжецов и рыцарей =0) итого : 2014 лжецов и 1 рыцарь.
1) Одному ребенку все носки не могли принадлежать, т.к. в любой пятерке было бы больше трех носков от одного хозяина. 2) Двум детям эти 9 носков тоже не могли принадлежать, т.к. тогда был бы ребенок, у которого как минимум 5 носков среди этих 9, а значит больше трех в пятерке. 3) Трем детям эти носки могли принадлежать: например, по 3 носка каждому. Тогда, ясное дело, в любой пятерке не более трех носков каждого. И в любой четверке есть обязательно 2 носка с одним хозяином, т.к. даже если мы берем по одному носку от каждого из трех детей, то четвертый носок в четверке мы вынуждены брать у того, у которого уже взяли. По другому носки распределяться не могут, т.к. тогда обязан быть ребенок, у которого найдено 4 или более носков, и тогда можно включить все эти 4 носка в пятерку, и их будет больше трех от одного хозяина. 4) 4 и более детей быть не может, т.к. тогда мы можем взять в четверку по одному носку от каждого, и получится, что в четверке нет двух носков одного ребенка.. Итак, ответ: могло быть только трое детей, и по три носка от каждого в найденной девятке.
24:2=12см
12+2=10
10:2=5
5+2
ответ а=5смс,В=7