Если число N представимо в виде : N=p1^n1 *p2^n2*pk^nk Где pk-простой делитель числа N.То по формулам комбинаторики выходит что общее число делителей равно: (1+n1)(1+n2)(1+n3)(1+nk)=50 Число 50 вводит всего чтоб все делители более 1) 5*5*2 25*2 10*5 1) вариант наименьшее делители у числа n будет когда простые числа самые малые: а самые малые имеют самые большие степени. N=2^4 * 3^4 *5 но делитель 3^4*5 более 100 2) вариант 2^25*3^2 но опять есть делители более 100 3)2^10*3^5 но опять есть делители более 100 ответ: Такого числа не существует.
Если число N представимо в виде : N=p1^n1 *p2^n2*pk^nk Где pk-простой делитель числа N.То по формулам комбинаторики выходит что общее число делителей равно: (1+n1)(1+n2)(1+n3)(1+nk)=50 Число 50 вводит всего чтоб все делители более 1) 5*5*2 25*2 10*5 1) вариант наименьшее делители у числа n будет когда простые числа самые малые: а самые малые имеют самые большие степени. N=2^4 * 3^4 *5 но делитель 3^4*5 более 100 2) вариант 2^25*3^2 но опять есть делители более 100 3)2^10*3^5 но опять есть делители более 100 ответ: Такого числа не существует.
80 008 < 80 800
80 800 < 88 000
88 000 > 80 080
50 036 < 50 063
50 063 < 50 630
56 300 > 50 603
50 003 < 56 300