1. У каждой десятичной дроби можно выделить целую часть.
2. Целую часть от дробной части в
десятичной записи числа отделяют запятой.
3. В записи десятичной дроби после
запятой может быть бесконечное число знаков (например, число π "пи").
4. Если в конце десятичной дроби
приписать несколько нулей, то получим тоже самое число (2,34=2,340000).
5. Если в конце десятичной дроби
отбросить имеющиеся нули, то получим тоже самое число (54,7000=54,7).
6. Большая дробь на координатном луче расположена правее от меньшей.
7. Меньшая дробь на координатном луче расположена левее от большей.
8. Из обыкновенной дроби в десятичную легко перевести ту дробь, у которой в знакменателе числа 10, 100, 1000...
9. Чтобы сложить десятичные дроби,
нужно действовать также, как при сложении многозначных чисел, следя за запятой.
Например: 5.4+6.2. Сложим целые части: 5+6=11; дробные: 4+2=6. Получаем 11.6.
10. Из двух десятичных дробей больше та, которая находится правее на луче. Если говорить о положительных числах (например, 6.7 и 10.1), то больше та, что больше по модулю). Если говорим об отрицательных числах (напрмер, -6.2 и -8.9), то больше та, которая меньше по модулю. Ну, если сравнивать отрицательное и положительное число, то больше, конечно, всегда положительное число.
11. Из двух десятичных дробей с равными целыми частями больше та, у которой после запятой в разряде десятых число большее.
12. Из двух десятичных дробей с равными целыми частями и равными цифрами в разряде десятых больше та, у которой в разряде сотен число большее.
13. Чтобы узнать на сколько одно число
больше или меньше другого, нужно от большего числа отнять меньшее число.
13/60+6/60-х=9/60 19/60-х=9/60 х=19/60-9/60 х=10/60 или 1/6 второе уравнение: 5/100+8/100+х=20/100 13/100+х=20/100 х=20/100-13/100 х=7/100
Пошаговое объяснение:
надеюсь . удачи.
Остается доказать, что большего количество хороших чисел быть не может. Для этого обратим внимание на то, что при сдвиге нашего массива чисел вправо на 1 все получающиеся суммы увеличиваются на 399. Теперь они будут принимать значения от 399 до 798. Плотность квадратов среди натуральных чисел с ростом чисел уменьшается (расстояние между ними каждый раз возрастает на 2), поэтому хороших чисел станет меньше (их там 9 штук - от 20 в квадрате до 28 в квадрате). Еще меньше квадратов мы будем получать, если массив сдвигать еще правее. В какой-то момент там вообще могут не получаться полные квадраты. Попытка сдвинуть массив не вправо, а влево вообще абсурдна, так как уже после первого сдвига все суммы станут отрицательными (ладно, уговорили, так и быть, одна сумма будет равна нулю).