Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни и многочлена являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где
Полное условие:
Выпуская в день одинаковое количество телевизоров, завод изготовил за 20 дней 50 800 телевизоров. Сколько телевизоров выпустит завод за ноябрь месяц, если он ежедневно будет выпускать на 10 телевизоров больше?
1) 50 800 : 20 = 2 540 телевизоров - изготовлял завод за 1 день
2) 2 540 + 10 = 2 550 телевизоров в день - будет изготовлять в ноябре
В ноябре 30 дней:
3) 2 550 * 30 = 76 500 телевизоров
ответ: завод в ноябре выпустит 76 500 телевизоров, если будет ежедневно выпускать на 10 телевизоров больше.
Пошаговое объяснение: