Углы, прилежащие к каждому из оснований равнобокой трапеции, равны. Доказательство. Докажем, например, равенство углов А и D при большем основании AD равнобокой трапеции АВСD. Для этой цели проведем через точку С прямую параллельную боковой стороне АВ. Она пересечет большое основание в точке М. Четырехугольник АВСМ являеся параллелограммом, т. к. по построению имеет две пары параллельных сторон. Следовательно, отрезок СМ секущей прямой, заключенный внутри трапеции равен её боковой стороне: СМ=АВ. Отсюда ясно, что СМ=СD, треугольник СМD - равнобедренный, РСМD=РСDM, и, значит, РА=РD. Углы, прилежащие к меньшему основанию, также равны, т. к. являются для найденных внутренними односторонним и имеют в сумме два прямых.
Если точка равноудалена от сторон угла, то она лежит на биссектрисе угла. А биссектриса угла при вершине равнобедренного треугольника является одновременно высотой и медианой. Биссектриса делит угол при вершине пополам. Рассмотрим треугольник МВК, где К - точка на стороне ВС. Он прямоугольный с катетом МК=1 и углом при вершине В=60. Из прямоугольного треугольника находим МВ=(2 корней из 3):3. Значит вся высота (медиана, биссектриса) при вершине В равна 2 корней из 3 + (2 корней из 3):2 = (8 корней из 3):3. Из большого прямоугольного треугольника ВДС надодим ДС по тангенсу угла в 30 градусов. ДС = (8 корней из 3):3 разделить на (корень из 3):3 = 8.
1) 42*18=756 2) 756:63=12 3) 48+12=60 4) 60-56=4
36+95-205*48:164=71
1) 205*48=9840 2) 9840:164=60 3) 36+95=131 4) 131-60=71
(2356+809-2841)*106:159=216
1) 2356+809=3165 2) 3165-2841=324 3) 324*106=34344 4) 32344:159=216
(3539+5016-12*203):211=29
1) 12*203=2436 2) 3539+5016=8555 3) 8555-2436=6119 4) 6119:211=29