Наличие искомых клеток возможно только при соприкасающихся прямоугольниках.
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках. Предположим, что мы имеем не соприкасающиеся прямоугольника, значит вокруг каждого прямоугольника мы имеем как минимум 3 пустых клетки. Следовательно, общая площадь доски должна быть: 85 клеток, что противоречит условию, т.к. размер поля 8*8=64. Следовательно обязательно имеются смежные прямоугольники, т.е. найдутся 2 клетки, имеющие общую сторону, лежащие в каждом из этих прямоугольников.
1) Дана функция y= -x^3-3x^2+4.
Её производная равна y' = -3x² - 6x = -3x(x + 2).
Приравняем её нулю: -3x(x + 2) = 0. Находим 2 критические точки:
х = 0 и х = -2.
Определяем их свойства по изменению знака производной.
х = -3 -2 -1 0 1
y' = -9 0 3 0 -9 .
В точке х = -2 минимум функции, у = 0.
В точке х = 0 максимум, у = 4.
На промежутках (-∞; -2) и (0; +∞) функция убывает
на промежутке (-2; 0) возрастает.
Вторая производная равна y'' = -6x - 6 = -6(x + 1).
Отсюда определяем точку перегиба х = -1.
х = -2 -1 0
y'' = 6 0 -6.
График выпуклый: (-1; +∞), вогнутый (-∞; -1).
Пересечение с осями решается алгебраически:
- с осью Оу при х = 0 у = 4.
- с осью Ох при у = 0 надо решить кубическое уравнение
-x^3-3x^2+4 = 0. Один корень виден: х = 1.
Делим -x³ - 3x² + 4 | х - 1
-x³ + x² -x² - 4x - 4
-4x² + 4
-4x² + 4x
-4x + 4
-4x + 4.
Результат -(x² + 4x + 4) = -(х + 2)².
Получили 2 точки пересечения: х = 1 и х = -2.
График приведен в приложении.
2) Возможные случаи состава корней кубического уравнения исчерпываются тремя, описанными ниже. Эти случаи легко различаются с дискриминанта
Δ = -4b³d + b²c² - 4ac³ + 18abcd - 27a²d².
Итак, возможны только три случая:
Если Δ > 0, тогда уравнение имеет три различных вещественных корня.
Если Δ < 0, то уравнение имеет один вещественный и пару комплексно сопряжённых корней.
Если Δ = 0, тогда хотя бы два корня совпадают.
Рассмотрим уравнение -x^3-3x^2+4=0.
Его коэффициенты a b c d
-1 -3 0 4
Определяем дискриминант:
-4b^3*d b^2*c^2 -4a*c^3 18abcd -27*a^2*d^2 Дискрим
инант
432 0 0 0 -432 0.
Как видим, при а = 0 уравнение имеет 2 корня.
Это видно и по графику.
наибольшее девятезначное 999999999 - 999 миллионов 999 тысяч 999