Саму задачу можно переформулировать немного по-другому:
Было: Расставить минимальное количество шашек на шахматной доске 8 на 8, так чтобы было невозможно поставить коня так, чтобы он не бил ни одной шашки.Переходит в: расставить на доске минимальное количество коней так, чтобы было невозможно поставить шашку не под удар коня.Если мы решим вторую задачу, то просто нужно будет заменить коней шашками - и мы получим искомое расположение.
По поводу второй задачи можно заметить, что:
Разные кони должны бить выделенные красным клетки на рисунке ниже.Отсюда следует, что мы не можем расставить менее, чем 4 * 3 = 12 коней. Если это можно сделать, то задача решится. И да, это получилось сделать (рисунок 2).
Заменяем коней шашками и получаем ответ: 12 коней.
ответ: 12 шашек.
Пошаговое объяснение:
Воспользуемся формулой
и рассмотрим вероятность того что на каждом уровне сошло по 1 посетителю
Р=m/n, где
n= количество которыми все 7 посетителей могут выйти на любых этажах
n=7*7*7*7*7*7*7=7⁷
m- количество выхода людей
m=7*6*5*4*3*2*1=5040
Р=5040/7⁷
"по крайней мере, двое сошли на одном уровне".
Событие «по крайней мере, двое сошли на одном этаже» противоположно событию «все сошли на разных этажах». Воспользуемся формулой вероятности противоположного события :
Р(А)=1- Р(А)
Р(А)= 1- 5040/7⁷= 1-5040/823543=116929/117649≈0,9939
Вероятность что хотя бы на одном уровне выйдет 2 человека равна 0,9939