Пошаговое объяснение:
Уравнения, выглядящие наподобие ax^2 + bx + c = 0, называются квадратными. Под буквами a, b, c подразумеваются числа, x - это пока неизвестное число. a - это первый коэффициент, b - второй, а c - свободный член.
Первый коэффициент стоит перед x^2. Он равен:
a = 1.
Второй коэффициент стоит перед x. Он равен:
b = 0.
Свободный член - это число, который стоит без x:
c = -7.
Под дискриминантом понимают число, которое равно b^2 - 4ac: D = b^2 - 4ac = 0^2 - 4 * 1 * -7 = 28.
Дискриминант ищут для того, чтобы узнать сколько решений у квадратного уравнения. Решение - это какие числа можно поставить вместо неизвестного числа, чтобы получить верное равенство. Итак найдём дискриминант:
D > 0, значит решений два: x = (-b ± D^(1/2))/(2a).
D^(1/2) = 28^(1/2).
x1 = 28^(1/2) / 2.
x2 = -28^(1/2) / 2.
Сумма 2018 натуральных чисел равна 2021. Тогда сумму можно представит в следующих видах:
1) В сумме 2017 слагаемые равны 1 и 2018-2017= 1 слагаемое 2021-2017·1 = 4, то есть
1+1+1+...+1+4 = 2021.
Тогда их произведение равно 1·1·1·...·1·4=4.
2) В сумме 2016 слагаемые равны 1 и 2018-2016= 2 слагаемых равные в сумме 2021-2016·1= 5. Число 5 можно разложить на 2 различные натуральные слагаемые 1+4=2+3, первое из которых уже рассмотрено и поэтому
1+1+1+...+1+2+3 = 2021.
Тогда их произведение равно 1·1·1·...·2·3=6.
3) В сумме 2015 слагаемые равны 1 и 2018-2015= 3 слагаемых равные в сумме 2021-2015·1= 6. Число 6 можно разложить на 3 различные натуральные слагаемые 1+1+4=1+2+3=2+2+2, первые 2 из которых уже рассмотрены и поэтому
1+1+1+...+1+2+2+2 = 2021.
Тогда их произведение равно 1·1·1·...·2·2·2=8.
4) В сумме 2014 слагаемые равны 1 и 2018-2014= 4 слагаемых равные в сумме 2021-2014·1= 7. Число 7 можно разложить на 4 различные натуральные слагаемые 1+1+1+4=1+1+2+3=1+2+2+2, все уже рассмотрены.
5) В сумме 2013 слагаемые равны 1 и 2018-2013= 5 слагаемых равные в сумме 2021-2013·1= 8. Число 8 можно разложить на 5 различные натуральные слагаемые 1+1+1+1+4=1+1+1+2+3=1+1+2+2+2, все уже рассмотрены.
Точно также можно установить, что остальные случаи не приводят к новым результатам.
ответ: 4,6,8.