1)если x больше 0:
x^2-5x больше 0
x(x-5) больше 0
т.к. х больше 0, то х-5 тоже больше 0, значит х больше 5. (это одна часть ответа - промежуток от 5 до + бесконечности. (не включая 5)
2) если x меньше 0
то модуль х равен (-х)
получаем:
x^2+5x больше 0
х(х+5) больше 0
т.к х меньше 0, то и х+5 меньше 0, значит х меньше (-5)
это второй промежуток решения : от - бесконечности до -5 (не включая -5)
3) 0 - легко подставить и понять, что решением не является
ответ: объединение двух промежутков: от - бескон. до -5 и от 5 до +бескон.
1) Если число 1 не стоит на месте i (i не равно 1), то меняем местами число 1 и число, стоящее на месте i.
2) Меняем местами число i и число 1.
Повторяем эти действия для всех i от 2 до 2017.
Покажем, что таким образом числа окажутся в порядке возрастания.
На месте t>1 после t-1 повторения оказывается число t. После этого мы это число не трогаем (далее мы меняем 1 только с числами, большими t).
Значит после 2016-го применения данного алгоритма на позициях 2..2017 окажутся числа 2..2017 в порядке возрастания. Значит для числа 1 осталось только позиция 1. Отсюда все числа расположены в порядке возрастания.
Всего произведено 2*2016=4032 операций.