Чтобы тебе было легче сравнить эти дроби, приведи их к общему знаменателю. 2/3 и 5/6 ... общий знаменатель -6 ,значит умножаем числитель и знаменатель первой дроби на 2 и получаем: 4/6 , а теперь сравниваем: 4/6 < 5/6, значит 2/3 < 5/6 и так далее с остальными дробями. 2/3 < 5/6 2/3 < 4/12 ( 12:3=4, значит умножаем первую дробь на 4=8/12 и 4/12) 3/4 > 5/8 (6/8 и 5/8) 3/4 = 24/32 (24/32 и 24/32)
Обозначим вершины прямого угла - Д , большего угла -М, и меньшего угла-Р, а точку пересечения высоты треугольника (h) с гипотенузой -К. тогда тпеугольники МКД и КДР подобны, причем, МК/h =h/КР⇔2,25/h=h/4, отсюда h=3см ДР²=КД²+КР²⇔ДР²=3²+4²⇒ДР=5см
Теперь опустим ⊥ из т.Д на плоскость b и обозначим т.О. Рассмотрим треугольники ДОК и ДОР ДО/КД=sin30=1/2⇒ДО/3=1/2⇒ДО=3/2=1,5 в треугольнике ДОР ДО/ДР=sinα, где α-искомая величина угла наклона ДР к плоскости b ДО/ДР= 1,5/5=sinα⇒sinα=0.3 Далее α можно определить по таблице Брадиса. α≈17°30мин