ответ:1)В первую очередь узнаем номер первой страницы после выпавших листов.
Из цифр числа 274 можно составить следующие возможные комбинации чисел: 247, 724, 742, 427, 472.
Страница 247 нам не подходит, так как меньше 274, а этого быть не может.
Мы знаем, что первая страница будет всегда нечетной, поэтому 724, 742 и 472 нам так же не подходят.
Вывод: номер первой страницы после выпавших листов — 427.
2)Определим количество выпавших страниц: 427 — 274 — 1 = 152 страницы.
3)Осталось узнать, сколько листов выпало из книги: 152 : 2 = 76 листов.
28 голов
Пошаговое объяснение:
Обозначим общее количество голов дракона х
Тогда количество голов после удара первого богатыря будет - a,
после второго богатыря - b.
Вот так:
(х : 2) - 2 = а - остаток голов после первого богатыря
(а : 2) - 2 = b - остаток голов после второго богатыря
(b : 2) - 2 = 0 - остаток голов после третьего богатыря, то есть ни одной.
Решение начинать будем с конца.
(b : 2) - 2 = 0
b/2 - 2 = 0
Прибавим 2 к обеим частям уравнения:
b/2 - 2 + 2 = 0 + 2
b/2 = 2
b = 2 • 2
b = 4
Мы нашли количество голов, которые остались у дракона после второго богатыря. И которые рубил третий богатырь.
Теперь подставляем b в наше уравнение:
(а : 2) - 2 = b
a/2 - 2 = 4
a/2 = 4 + 2
a/2 = 6
a = 6 • 2
a = 12
Тут мы нашли количество голов, которые остались у дракона после первого богатыря. И которые рубил второй богатырь
Теперь вычислим сколько голов было с самого начала
(х : 2) - 2 = а
(х : 2) - 2 = 12
х/2 - 2 = 12
х/2 = 12 + 2
х/2 = 14
х = 14 • 2 = 28
Столько голов было у дракона с самого начала.
Пока богатыри его не убили, несчастного.
ответ: 28 голов
А, ну и проверочка, конечно
(28 : 2) + 2 = 16 голов срубил первый богатырь, видимо Илья Муромец
28 - 16 = 12 - столько голов он оставил двум другим богатырям
(12 : 2) + 2 = 8 - столько голов срубил второй богатырь. Скорее всего Добрыня Никитич.
12 - 8 = 4 - осталось после него драконьих голов
(4 : 2) + 2 = 4 - вот 4 последние головы срубил последний богатырь. Алёша Попович скорее всего)
4 - 4 = 0 вот и закончились даконьи головы)
3/Задание № 2:
Сколько всего цифр пришлось бы написать, если выписать друг за другом все числа от 3 до 103 включительно?
РЕШЕНИЕ: однозначные - от 3 до 9 - 7 цифр.
двузначные - все от 10 до 99 - 90 чисел - 90*2=180 цифр
трехзначные - от 100 до 103 - 4 числа - 4*3=12 цифр
7+180+12=199 цифр
ОТВЕТ: 199 цифр