9
Пошаговое объяснение:
Три последовательных нечетных числа имеют вид (2n + 1), (2n + 3), (2n + 5), где n -- целое. По условию задачи должно выполняться неравенство:
(2n + 1) + (2n + 3) + (2n + 5) > 27
6n + 9 > 27
6n > 18
n > 3
Наименьшее нечетное целое, для которого выполняется условие задачи, получается при n = 4 и равно (2·4 + 1) = 9.
Проверка, что число 9 действительно является наименьшим:
7 + 9 + 11 = 27 -- не подходит, т.к. по условию сумма должна быть строго больше 27.
9 + 11 + 13 = 33 -- подходит.
3х = 0,03
х = 0,03 : 3
х = 0,01
0,01 * 4 = 0,04 - первое число;
0,01 * 7= 0,07 - второе число.
2) 4х * 7х = 252
28х = 252
х = 252 : 28
х = 9
4 * 9 = 36 - первое число;
7 * 9 = 63 - второе число.