Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
Примеры прерывных случайных величин:1) число появлений герба при трех бросаниях монеты (возможные значения 0, 1, 2, 3);2) частота появления герба в том же опыте (возможные значения );3) число отказавших элементов в приборе, состоящем из пяти элементов (возможнее значения 0, 1, 2, 3, 4, 5);4) число попаданий в самолет, достаточное для вывода его из строя (возможные значения 1, 2, 3, …, n, …);5) число самолетов, сбитых в воздушном бою (возможные значения 0, 1, 2, …, N, где – общее число самолетов, участвующих в бою).Примеры непрерывных случайных величин:1) абсцисса (ордината) точки попадания при выстреле;2) расстояние от точки попадания до центра мишени;3) ошибка измерителя высоты;4) время безотказной работы радиолампы.Условимся в дальнейшем случайные величины обозначать большими буквами, а их возможные значения – соответствующими малыми буквами. Например, – число попаданий при трех выстрелах; возможные значения: .Рассмотрим прерывную случайную величину с возможными значениями . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий: