Рассмотрим простой пример:
15:5=3
В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.
Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу:
В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?
Поделим число 16 на 5 столбиком получим:
Деление с остатком
Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.
16=5⋅3+1
a=b⋅c+d
a – делимое,
b – делитель,
c – неполное частное,
d – остаток.
Если D=77 кг, а Е=47 кг, то С=329-(77+47)=205 кг
Если В=248 кг, то F =433-248=185 кг
Если G=108 кг, то А=271-108=163 кг
Поэтому имеем:
А=163 кг
В=248 кг
С=205 кг
D=77 кг
Е=47 кг
F =185 кг
G=108 кг
Если лифт не может поднять больше 475 кг и алфавитный порядок не может быть нарушен, то
Первый рейс - А и В едут вместе (163+248=411<475) C к ним не поместиться (411+205=616>475)
Второй рейс - C, D, E едут вместе (205+77+47=329<475) F к ним не поместиться (329+185=514>475)
Поэтому F и G едут вместе третьим рейсом - 185+108=293<475
Сответственно, наименьшее возможное количество поездок = 3