М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Zebra1411
Zebra1411
22.11.2020 13:23 •  Математика

Процентное отношение градусных мер смежных углов равно 25%. найдите градусные меры этих углов

👇
Ответ:
Артур15051505
Артур15051505
22.11.2020
Сумма смежных углов должна быть равна 180 градусов.Значит,угол смежных с углом 180 градусов равен 100 градусов.
угол,вертикальный с углом 80 градусов,тоже равен 80 градусов.
угол,вертикальный с углом 100 градусов,тоже равен 100 градусов.
4,5(24 оценок)
Открыть все ответы
Ответ:
arinahomich05
arinahomich05
22.11.2020

Объём параллелепипеда равен смешанному произведению векторов, на которых он построен:

Поскольку смешанное произведение векторов, может быть отрицательным числом, а объём геометрического тела - всегда число положительное, то при вычислении объёма параллелепипеда, построенного на векторах, результат смешанного произведения берется по модулю:

Таким образом, для того, чтобы вычислить объём параллелепипеда, построенного на векторах, нужно найти смешанное произведение данных векторов, и полученный результат взять по модулю.

4,5(69 оценок)
Ответ:
563836
563836
22.11.2020
Объем параллелепипеда равен смешаному произведению векторов, на которых он построен. Назовем эти вектора а, b, c. Теперь представьте себе этот параллелепипед, точнее его грани. Если Вы вспомните, как строится вектор, являющийся суммой двух других векторов, то Вы поймете, что диагонали граней нашего параллелепипеда есть векторные суммы: a + b a + c b + c А теперь давайте составим из этих векторов смешанное произведение и найдем объем построенного на этих векторах параллелепипеда: ([(a+b),(a+c)](b+c)) = а теперь вспомним алгебраические свойства векторного произведения = ([a,(a+c)](b+c)) + ([b,(a+c)](b+c)) = ([a,a](b+c)) + ([a,c](b+c)) + ([b,a](b+c)) + ([b,c](b+c)) = помним что векторное произведение коллинеарных векторов равно 0 = ([a,c](b+c)) + ([b,a](b+c)) + ([b,c](b+c)) = Теперь вспомним свойства скалярного произведения векторов, а именно такое: (a,(b + c)) = (a, b) + (a, c) Применяя его получим: = ([a,c],b) + ([a,c],c) + ([b,a],b) + ([b,a],c) + ([b,c],b) + ([b,c],c) = Теперь вспомним, что скалярное произведение ортогональных векторов равно 0. Так, как в результате векторного произведения получается вектор, перпендикулярный векторам, входящим в векторное произведение, то произведения: ([a,c],c), ([b,a],b) , ([b,c],b), ([b,c],c) Равны 0. Действительно в результате векторного произведения [a,c] получается вектор, перпендикулярный вектору с. А скалярное произведение этого вектора с вектором с равно 0. Точно так же и в других произведениях. Вообще говоря, если в смешаное произведение дважды входит один и тот же вектор - оно равно 0. и остается у нас: = ([a,c],b) + ([b,a],c) = 2([a,c],b) Что и требовалось доказать. Успехов!
4,6(86 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ