Ромб ABCD сторона AB= 10 угол ABC = 150* большая диагональ D2 меньшая D1 точка пересечения О. в прямоугольном треугольнике ABO угол ABO = 150/2 = 75* т.к BO является биссектрисой и высотой. сторона АВ является гипотенузой и равна 10 . АО катет лежащий против угла 75* отсюда АО = АВ * tg 75*=10 * 3.73=37.3 АО является половиной диоганали d2 вся диоганаль 2 * АО = 2*37.3=74.64 катет ВО = АВ * cos 75* = 10 * 0.259 =2.588=2.59 отсюда вся диагональ d1 =2*BO = 2* 2.59=5.176 площадь ромба S= 1/2(d1 * d2) = 0.5(5.176 * 74.64) = 193.19
Положение центра вписанной окружности определим, узнав высоту трапеции. Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна: Радиус описанной окружности равен: Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
|a| + |b|
|a-b|
|a|-|b|