Решить уравнение здесь определение координат точек по заданному расстояние это вот тема 43 решите уравнение модуль икс скобка открывается икс минус 5,12 скобка закрывается равно 2.01 короче это все такие
Поскольку при выкладывании по 8 и по 9 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 8 и на 9 с остатками.
Остаток от деления любого числа на 8 не может быть больше 7. По условию это число на 6 больше, чем остаток от деления на 9. Но остаток от деления на 9 тоже не равен нулю. Значит, остаток от деления на 8 может быть равен только 7. А остаток от деления на 9 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком 1. Проверив все числа в пределах 100, делящиеся на 9 с остатком 1, получим ответ: 55 плиток
Решение: х км/ч –первоначальная скорость автобуса, у км/ч – скорость маршрутного такси.180/х – время автобуса, 180/у – время такси. Из условия следует, что автобус был в пути на 27 мин дольше. 180/х-180/у=27/60=9/20
После изменения скорости автобус км – за 180/(х+10) ч, а маршрутное такси – за 180/(у-10) Из условии следует, что 180/(х+10)=180/(у-10) Решаем систему уравнений. у=х+20 и 20/х – 20/(х+20)=1/20 отсюда: х+20-х=(х2+20х)/400; х2+20х-8000=0
х1=-100 х2=80 По смыслу задачи х>0, значит искомое значение скорости автобуса равно 80 км/ч. ответ: 80.
9.Велосипедист ехал из А в В со скоростью 15 км/ч, а возвращался назад со скоростью 10 км/ч. Какова средняя скорость велосипедиста на всём участке?
Решение: Решим задачу с лишнего» неизвестного. Пусть – х км – расстояние от А до В, тогда х/15+х/10=х/6 ч затрачено на путь туда и обратно. Вычислим среднюю скорость, поделив пройденный путь на время движения: 2х:х/6=2х*6/х=12 (км/ч)
Решение.
Поскольку при выкладывании по 8 и по 9 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 8 и на 9 с остатками.
Остаток от деления любого числа на 8 не может быть больше 7. По условию это число на 6 больше, чем остаток от деления на 9. Но остаток от деления на 9 тоже не равен нулю. Значит, остаток от деления на 8 может быть равен только 7. А остаток от деления на 9 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком 1. Проверив все числа в пределах 100, делящиеся на 9 с остатком 1, получим ответ: 55 плиток