Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40":
; В итоге получим следующее уравнение:
. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо
будет стоять
; Это приведет к тому, что придется убавить
; В итоге:
; Слева стоит квадрат суммы. Уравнение примет вид:
; Сворачивая еще раз:
; Получаем серию прямых:
; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую
; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников.
; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты
; Ну а все решения:
120 = 2³ · 3 · 5
300 = 2² · 3 · 5²
100 = 2² · 5²
наименьшее общее кратное = 2³ · 3 · 5² = 600
480 = 2^5 · 3 · 5
216 = 2³ · 3³
144 = 2^4 · 3²
наименьшее общее кратное = 2^5 · 3³ · 5 = 4320
105 = 3 · 5 · 7
350 = 2 · 5² · 7
140 = 2² · 5 · 7
наименьшее общее кратное = 3 · 5² · 7 · 2² = 2100
280 = 2³ · 5 · 7
140 = 2² · 5 · 7
224 = 2^5 · 7
наименьшее общее кратное = 2^5 · 5 · 7 = 1120
подробнее - на -
Далее 12 - 0,75*m
x - m⇒x=12*m/(0,75*m)=12/0,75=16.
ответ: m=16.