Встоловой испекли 93 блина. в каждой порции должно быть по 5 блинов. какое самое маленькое число может съесть сам повар, чтобы из всех оставшихся блинов можно было полные порции?
Число делится на 12 когда оно делится на 3 и на 4. Подставим вместо пропусков цифру 2, получили число 924252. Проверим делится ли оно на 4: Число делится на 4 когда число из двух его последних цифр делится на 4. В нашем случае это 52, его можно представить как 40+12. И 40 и 12 делятся на 4, значит и число 52 делится на 4. Теперь проверим делится ли наше число 924252 на 3: Число делится на 3 когда сумма его цифр делится на 3. Сумма цифр равна 9+2+4+2+5+2=24, 24 делится на 3, значит и всё число делится на 3. Так как число делится на 3 и на 4, то оно делится на 12 без остатка.
Пусть было х коробок. Пусть также при расстановке по 8 было занято m полных полок и на последней осталось r коробок, r≤7, а при расстановке по 5 коробок было занято n полных полок и на последней осталось r-6 коробок, r-6≥1. Отсюда 7≥r≥7, т.е. r=7. Итак x=8m+7 и x=5n+1. Вычитаем эти уравнения: 0=8m-5n+6, то есть n=(8m+6)/5. Минимальное m, при котором 8m+6 делится на 5 будет m=3, а значит x=8*3+7=31. Все другие подходящие m имеют вид m=3+5k, при k≥1, т.е. m≥3+5=8, но тогда х=8m+7≥8*8+7=71, а по условию x<70. Значит остается единственная возможность х=31.
три блина