ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение:
Квадрат - это 2
Пошаговое объяснение:
Обозначим круг=x, квадрат=y и треугольник=z. По условию
x+y+x=y·10+z и y+z=y.
Из второго равенства получаем: z=y-y=0. Тогда первое равенство принимает вид:
x+y+x=y·10+0 или 2·x=y·10-y или 2·x=9·y или x=9·y:2.
Так как x и y цифры, то есть целые числа, то y чётное число и
0≤9·y:2≤9.
Но y - это десятичная цифра и поэтому y>0. Отсюда: y=2 или y=4 или y=6 или y=8.
Перебираем все варианты и проверим неравенство 0≤9·y:2≤9:
y=2, то x=9·2:2=9, подходит, и квадрат - это 2;
y=4, то x=9·4:2=18, не подходит;
y=6, то x=9·6:2=27, не подходит;
y=4, то x=9·8:2=36, не подходит.
5^x*5+5*1/5^x=26
Решим уравнение используя подстановку: t=5^x
Тогда: t*5+5*1/t=26
5t+5/t-26=0 (*t)
5t^2+5-26t=0
5t^2-26t+5=0
D=-(-26)^2-4*5*5=576
t1=26+24/10 = 5
t2=26-24/10 = 1/5
5^x=5 , x=1
5^x=1/5, x=-1
2) 5*5^x-3*1/5^x=2
Решим уравнение используя подстановку: t=5^x
Тогда: 5t-3*1/t=2
5t-3/t-2=0 (*t)
5t^2-3-2t=0
5t^2-2t-3=0
D=-(-2)^2-4*5*(-3)= 64
t1=2+8/10=1
t2=2-8/10=-3/5
5^x=1, x=0
5^x=-3/5(нет решения)