1)
Поскольку x = 0 не является решением данного дифференциального уравнения, то поделим обе части уравнения на , получаем
В левой части уравнения это ни что иное как формула производной частного, то есть :
Подсчитаем отдельный интеграл по частям.
2)
Это линейное однородное дифференциальное с постоянными коэффициентами. Замена , перейдём к характеристическому уравнению:
,
корни которого
и
. Тогда общее решение диф. уравнения:
и его первая производная
.
Осталось найти константы C₁ и C₂ , подставляя начальные условия.
— частное решение.
50 326 007
2ед 3 класса. 6 ед. 2 класса.108ед.1 класса
2 006 108
160ед .3 класса. 75ед. 2 класса.80 ед.1 класса
160 075 080