Ну для начала, решаем пример: 348*24+348*36= 1) 348*24=8352 2) 348*36=12528 3) 12528+8352=20880. Число 20880 делится на 5, потому что когда число оканчивается на "5" или "0", оно делиться на 5.
Неравенство: (a-3)x^2 - (a+1)x + (a+1) >= 0 В общем, нужно понять, что если ветви параболы направлены вверх и неравенство f(x) >= 0 выполняется при любом х, то возможны два случая, нарисованные на картинке: Или вершина касается оси Ох (D = 0), или находится выше (D < 0).
1) Вершина параболы находится на оси Ox и D = 0. D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) = 0 a1 = -1, a2 = 13/3
2) Вершина находится выше оси Ox и D < 0 D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) < 0 a < -1 U a > 13/3
По факту можно было решить одно неравенство D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) <= 0 a <= -1 U a >= 13/3
Но еще нужно учесть вот какой момент. Если член x^2 = 0, то парабола вырождается в прямую, и она уже не будет положительна при любых х. То есть при каком-то х она пересечет ось Ох и станет отрицательной. Поэтому a =/= 3 = 9/3 < 13/3. Но нам повезло, число 3 и так не входит в ответ. ответ: a принадлежит (-oo; -1] U [13/3; +oo)
1) 348*24=8352
2) 348*36=12528
3) 12528+8352=20880.
Число 20880 делится на 5, потому что когда число оканчивается на "5" или "0", оно делиться на 5.