М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Daniela04102005
Daniela04102005
23.07.2020 12:34 •  Математика

А)2целых1/10*1целую1/14 б)4целых4/9: 2целых2/3ю

👇
Ответ:
Анечка12311
Анечка12311
23.07.2020
ответ на картинке.
удачи тебе и хорошо учись!
А)2целых1/10*1целую1/14 б)4целых4/9: 2целых2/3ю
4,4(7 оценок)
Открыть все ответы
Ответ:

Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ((3x)^{2}-y^{2})^{2}; В следующих двух слагаемых вынесем общий множитель "40": 40(9x^{2}+y^{2})=40((3x)^{2}+y^{2}); В итоге получим следующее уравнение: ((3x)^{2}-y^{2})^{2}-40((3x)^{2}+y^{2})+400=0. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо (3x)^{2}-y^{2} будет стоять (3x)^{2}+y^{2}; Это приведет к тому, что придется убавить 2\times 18x^2y^2=4(3xy)^{2}; В итоге: ((3x)^{2}+y^{2})^{2}-40((3x)^{2}+y^{2})+400= 4(3xy)^{2}; Слева стоит квадрат суммы. Уравнение примет вид: ((3x)^{2}+y^{2}-20)^{2}=(6xy)^{2} \Leftrightarrow ((3x)^{2}+y^{2}-20+6xy)((3x)^{2}+y^{2}-20-6xy)=0; Сворачивая еще раз: ((3x+y)^{2}-20)((3x-y)^{2}-20)=0; Получаем серию прямых: \pm 3x+\sqrt{20},\; \pm3x-\sqrt{20}; А теперь приступим к рассмотрению первого уравнения.

Это уравнение задает круг с центром в точке (0, 0) и радиусом \sqrt{2} ; Рассмотрим прямую y=3x+\sqrt{20}; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. \frac{\sqrt{20}\times 3}{3\times 10\sqrt{2}}=\frac{r}{\sqrt{20}} \Leftrightarrow r=\sqrt{2}; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5} } ); Ну а все решения:

(\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5})

4,6(12 оценок)
Ответ:
ariana76
ariana76
23.07.2020
1. Если к четному числу разрешается прибавлять 7, от нечетного вычитать 4, то как получить (если это возможно): а) из числа 29 число 17; б) из числа 29 число 15; в) из числа 16 число 29.
а) Число 29 - нечетное. Следовательно, из него можно вычитать 4. 29 - 4 = 25; 25 - 4 = 21; 21 - 4 = 17б) из 29 число 15 уже немного посложнее, но попробуем:)в раз мы остановились на 17. 17 - 4 = 13; 13 - 4 = 9; 9 - 4 = 1, далее вряд ли можно уже вычитать. Следовательно, в данном примере это невозможно. в) из числа 16 число 29. Число 16 уже четное. 16 + 7 = 23; 23 уже нечетное, следовательно из него уже надо вычитать 4. 23 - 4 = 19; 19 - 4 = 15; 15 - 4 = 11; 11 - 4 = 7; 7 - 4 = 3; далее вычитать нельзя. 
Думаю, так:) Если что простить__ 
4,7(28 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ