Куб натурального числа n можно представить в виде n слагаемых, образующих арифметическую прогрессию с разностью 2.
Доказательство:
Если n — число нечётное:
Пусть средний член равен n². Тогда сумма членов этой прогрессии равна n² + n² - 2 + n² + 2 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Если n — число чётное:
Пусть средние члены (по счёту n/2 и n/2 + 1) равны n²-1 и n²+1. Сумма членов прогрессии равна: n² - 1 + n² + 1 + n² - 3 + n² + 3 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Во всех возможных случаях мы смогли представить куб натурального числа в виде n слагаемых, что и требовалось доказать.
Если я правильно понял условие, то в одном равенстве можно использовать только один знак деления.
Тогда из приведённого списка чисел делимыми не могут быть числа:
1) 9, так как у этого числа в списке только один отличный от 9,
это число 3, но 9:3=3. В равенстве повторяется число 3.
2) числа 3, 7 и 2. Они простые, и делятся только сами на себя и на 1.
3) 4 - только один отличный от 4 делитель, число 2, но в равенстве 4:2=2 повторяется число 2.
Значит, делимыми могут быть только 27, 32, 6, 21, 12, 8.
Для каждого из этих 6 чисел получается по 2 допустимых равенства, кроме числа 12, для которого допустимых равенств - 4.
(всего 14):
27:9=3 и 27:3=9;
32:8=4 и 32:4=8;
6:3=2 и 6:2=3;
21:3=7 и 21:7=3;
12:2=6, 12:3=4, 12:4=3 и 12:6=2;
8:2=4 и 8:4=2.
Деление
Вычитания
Сложение