Основание правильной четырехугольной пирамиды - правильный четырехугольник или квадрат. Для того, чтобы найти площадь основания - надо найти длину стороны основания. Диагональное сечение пирамиды - это треугольник, имеющий основанием диагональ квадрата, а сторонами - боковые ребра. Пусть длина диагонали равна b, тогда длина стороны квадрата будет равна, по теореме Пифагора a = b/sqrt(2) (Нарисуйте квадрат - разделите его диагональю. Диагональ - это гипотенуза, стороны - катеты) . Площадь треугольника - сечения пирамиды, равна: S1 = b*h/2, где h - высота пирамиды, Т. к. пирамида правильная. Высота пирамиды делит сечение на 2 прямоугольных треугольника, так что, по теореме Пифагора: h = sqrt(25 - b^2/4) С другой стороны, площадь основания равна: S2 = a^2 Приравнивая S1 = S2 и исключая h, находим: b^2/4 = b*sqrt(25 - b^2/4)/2 или b^2 = 2b*sqrt(25 - b^2/4) b = 2sqrt(25 - b^2/4) Из этого уравнения находите диагональ b, а затем стороно а и площадь квадра S2.
Саид – ? в два раза больше, чем у↓ Эльмир – ? на 8 манат меньше, чем у ↓ Самир – ? Всего(фигурная скобка) – 56 манат
Пусть Х манат у Эльмира, тогда (Х+8) манат у Самира и 2Х(в два раза больше) манат у Саида. Всего 56 манат. Составим и решим уравнение: х + (х + 8) + 2х = 56 х + х + 2х = 56-8 4х = 48 х = 12 манат у Эльмира (Эльмир = х) 1) 12+8 = 20 манат у Самира (Самир = х+8) 2) 2×12 = 24 манат у Саида (Саид = 2х) ответ: у Саида – 24 маната, у Эльмира – 12 манат, у Самира – 20 манат.
Диагональное сечение пирамиды - это треугольник, имеющий основанием диагональ квадрата, а сторонами - боковые ребра.
Пусть длина диагонали равна b, тогда длина стороны квадрата будет равна, по теореме Пифагора a = b/sqrt(2) (Нарисуйте квадрат - разделите его диагональю. Диагональ - это гипотенуза, стороны - катеты) .
Площадь треугольника - сечения пирамиды, равна:
S1 = b*h/2,
где h - высота пирамиды, Т. к. пирамида правильная. Высота пирамиды делит сечение на 2 прямоугольных треугольника, так что, по теореме Пифагора:
h = sqrt(25 - b^2/4)
С другой стороны, площадь основания равна:
S2 = a^2
Приравнивая S1 = S2 и исключая h, находим:
b^2/4 = b*sqrt(25 - b^2/4)/2
или
b^2 = 2b*sqrt(25 - b^2/4)
b = 2sqrt(25 - b^2/4)
Из этого уравнения находите диагональ b, а затем стороно а и площадь квадра S2.