Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Вычислим вероятность того, что с полки взяли 2 не учебника. Тогда искомая вероятность есть дополнение этой вероятности до 1.
Вероятность достать не учебник первый раз равна (10-3)/10 = 7/10. Вероятность достать не учебник во второй раз равна (9-3)/9 = 6/9 = 2/3 (второй раз книга берется в случае, если в первый взяли не учебник. На полке осталось 9 книг, из них по-прежнему 3 - учебники).
Полная вероятность равна произведению вероятностей этих вариантов: 7/10 · 2/3 = 7/15.
Значит, вероятность получить среди 2 книг учебник равна 1 - 7/15 = 8/15 > 1/2(!).
--- Можно сосчитать и напрямую. Варианты достать учебник с полки у нас такие: 1. Достать учебник и учебник. Вероятность равна 3/10 · 2/9 = 1/15 = 2/30. 2. Достать учебник и книгу. Вероятность равна 3/10 · 7/9 = 7/30. 3. Достать книгу и учебник. Вероятность равна 7/10 · 3/9 = 7/30.
41 остаток 2 73 остаток 5 148 остаток 2 125 остаток 1 208 остаток 3
Пошаговое объяснение:
248:6 берём по 24:6=4 8:6=1 остача 2 =41 остаток 2
652:9= берём по 65:9=7 32:9=3 остаток5 = 73 остато5
546:3= берём по 5:3=1 14:3=4 26:3=8 осток 2 =148 остаток 2
876:7= берём по8:7=1 17:7=2 36:7=5 остаток 1 = 125 остаток 1
835:4 берём по8:4=2 3 мало ставим 0 35:4=8 остаток 3 = 208 остаток 3