Смотрим слова, во всех по 7 букв; как и в числах все по 7 цифр; первая буквы разные, вторая буква А и Е, три А, смотрим в числах вторую цифру; 5; 5; 3; 5; значит Если три раза 5, тогда это А; и одна 3, тогда Е=3.
Пишем внизу в табличку Под 3 букву Е, под 5 букву А;
Теперь смотрим последние буквы слов, там тоже три А и одна К; А=5 нашли, значит смотрим последние цифры чисел; 5;5;5 и 1; тогда К=1;
под 1 в табличку пишем К; теперь можно записать что нашли, заменяем везде цифры 5 на А ; 3 на Е и 1 на К;
Смотрим у нас только одно слово заканчивается на К, значит 8323741= теремок.
Дописываем в табличку буквы вместо цифр из слова теремок. Остаётся найти 6,,9 и 0. Пишем в другие числа все буквы, что уже нашли.
2513815=2АКЕТКА; тут 4 буква Е, 5-Т,уже теремок нашли, значит это Ракетка, пишем 2513815= РАКЕТКА.
Остались два числа, слова баранка и картина. Заменяем числа на буквы. 1528695=КАРТ69А, первая К, слово Картина, осталась баранка =0525915. Дописываем буквы в табличку 6;9 и 0.
Эту логическую задачу можно разрешить двумя 1) Первый заключается в последовательном предположении о количестве честных и нечестных гномов и последующей проверке логикой каждого нашего предположения; для начала допустим, что все двенадцать гномов лгуны, проверяем логику — первый гном, заявив «здесь нет ни одного честного гнома», сказал правду, значит, не выполняется наше первоначальное «все двенадцать лгуны»; для варианта «один гном честен» логика опять нарушена, ведь тогда выходит, что 2-ой, 3-ий, 4-ый и далее до 12-го гнома сказали правду, а мы предположили, что такой только один. Нетрудно убедиться, что применяя такой же алгоритм далее (последовательно предполагая, что 2-е, 3-е, 4-ро, 5-ро, 6-ро, 7-ро, 8-ро, 9-ро, 10-ро, 11-ро, 12-ро гномов говорят правду) мы почти во всех случаях получим сбой логики, исключение же составит только случай, когда правдивых гномов шестеро, ведь именно для этого варианта логика соблюдается: только седьмой, восьмой, девятый и далее до двенадцатого гномов не грешат против правды. Таким образом мы приходим к выводу, что на самом деле на полянке собралось шестеро честных и шестеро нечестных гномов. 2) Второй весьма близок к «эвристическому методу» - мы допускаем (помня про 50-ти процентную вероятность выпадения «орла» и «решки» при бросании монеты), что первые шесть гномов врут, а оставшиеся шесть — говорят правду. Проверяя такое предположение, приходим к выводу: если бы врущих было пять или меньше пяти, то правду сказали бы по крайней мере семь гномов – с шестого по двенадцатый, что не отвечает логике, а если бы говорящих правду гномов было семь или больше, то тогда выходит, что первые семь гномов солгали, то есть лжецов по крайней мере семь, но два раза по семь больше двенадцати, следовательно, наше первичное предположение: 6+6 — верно.
200*1:2=100
30*1:3=10
32*1:4=8
45*1:5=9
60*1:3=20мин
60*1:2=30мин
100*1:2=50см
10*1:2=5см