Рассчитаем НОД
Алгоритм Евклида работает так: (a,b) = (b, a%b)
(% - остаток от деления, скобки - нод)
Тогда (45649, 16013) = (16013, 45649%16013) = (16013, 13623) = (13623, 16013%13623) = (13623, 2390) = (2390, 13623%2390) = (2390, 1673) = (1673, 2390%1673) = (1673, 717) = (717, 1673%717) = (717, 239) = 239 (717 поделилось на 239 нацело)
Итак, НОД этих двух чисел = 239
НОК невозможно рассчитать с алгоритма Евклида, зато мы можем воспользоваться формулой
a*b=НОД*НОК
a*b = 730 977 437
НОК = 730 977 437 / 239 = 3 058 483
Пошаговое объяснение:
|1+2x|<9
Допустим: |1+2x|=9
При 1+2x≥0:
1+2x=9; x₁=(9-1)/2=4
При 1+2x<0:
-1-2x=9; -2x=9+1; x₂=10/(-2)=-5
Проверка при x₁>4; x₂>-5: |1+2·5|<9; |11|<9; 11>9 - неравенство не выполняется.
Проверка при x₁<4; x₂<-5: |1+2·(-6)|<9; |-11|<9; 11>9 - неравенство не выполняется.
Проверка при x₁<4; x₂>-5: |1+2·0|<9; |1|<9 - неравенство выполняется.
Проверка при x₁>4; x₂<-5: |1+2·5|<9; |11|<9; 11>9 - неравенство не выполняется; |1+2·(-6)|<9; |-11|<9; 11>9 - неравенство не выполняется.
Следовательно: -5<x<4
ответ: x∈(-5; 4)
2кг-2000гр
2000гр-35р
35:2000=0.0175
0.0175*300=5.25