М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vinokurovbob
vinokurovbob
10.04.2020 22:58 •  Математика

Решили уравнение х+7/12=3/4 ну это дроби

👇
Ответ:
Sashonmillioner
Sashonmillioner
10.04.2020
Вот в общем. Надеюсь
Решили уравнение х+7/12=3/4 ну это дроби
4,7(75 оценок)
Ответ:
123qjfj
123qjfj
10.04.2020
х+7/12=3/4
х=3/4-7/12=9/12-7/12=2/12=1/6
х=1/6
4,5(37 оценок)
Открыть все ответы
Ответ:
TATARNH7
TATARNH7
10.04.2020
Решение

  Пусть x, y – искомые трёхзначные числа. По условию  7xy = 1000x + y.

  Первый Разделим обе части равенства на x:  7y = 1000 + y/x.  Число y/x положительно и меньше 10, так как  y ≤ 999,  x ≥ 100.  Поэтому  1000 < 7y < 1010.  Деля это неравенство на 7, получаем  1426/7 < y < 1442/7.  Так как y – целое число,  y = 143 или 144. 
  Подставляя  y = 143  в равенство, получаем   7x·143 = 1000x + 143.  Решая это уравнение, находим  x = 143. 
  Если  y = 144,  то аналогичное уравнение даёт  x = 18,  а это число – не трёхзначное.

  Второй Перепишем равенство в виде  1000x = (7x – 1)y.  Числа x и  7x – 1  взаимно просты. Значит,  7x – 1  – делитель числа 1000. Но 
7x – 1 ≥ 7·100 – 1 = 699,  поэтому  7x – 1 = 1000,  откуда  x = 143.  Подставляя в исходное уравнение, находим  y = 143.
ответ
143 и 143.
4,8(38 оценок)
Ответ:
Quickpool
Quickpool
10.04.2020
ЭТ ЯВНО НЕ 1-4 КЛАСС.

Первый случай.
Пусть x, y — искомые трехзначные числа. Если к числу x приписать три нуля, то получится число 1000x, если приписать y, то получится 1000x + y. 
Итак, ученик написал число 1000x + y. По условию это число в семь раз больше, чем x . y. Получается равенство 
7x . y = 1000x + y. 
Разделим обе части равенства на x: 
7y = 1000 + y / x
Число [t]y / x положительно и меньше 10, так как y999, x100. Поэтому 
1000 < 7y < 1010. 
Деля это неравенство на 7, получаем 
142 < y < 144. 
Так как y — целое число, y — либо 143, либо 144. Пусть y = 143. Подставляя это значение y в равенство, получаем: 
7x . 143 = 1000x + 143. 
Решая это уравнение, находим x = 143. Если y = 144, то аналогичное уравнение дает x = 18, что не годится, потому что x — число из трех цифр. 
Второй случай. Перепишем равенство в виде 1000x = (7x - 1)y. Нетрудно видеть, что x и 7x - 1 не имеют общих делителей, отличных от 1 и -1. Действительно, если d — общий делитель чисел x и 7x - 1, то d является делителем числа 7x, а значит, и делителем числа 1 = 7x - (7x - 1). Но 1 делится только на 1 и -1. 
Итак, число 7x - 1 — делитель произведения 1000 . x и взаимно просто со вторым множителем. Тогда, по известной теореме, число 7x - 1 — делитель числа 1000. Но 
7x - 17 . 100 - 1 = 699, 
поэтому 7x - 1 = 1000 (единственный делитель числа 1000, больше либо равный 699 — это само число 1000), откуда x = 143. Подставляя x = 143 в исходное уравнение, находим y = 143.
4,7(11 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ