М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
radchukilia
radchukilia
21.01.2021 11:05 •  Математика

Валентин подарил виктории розы и орхидеи,причём орхидей было в 4 раза меньше, чем роз.сколько роз подарил валентин,если известно,что их было на 51 больше,чем орхидей?

👇
Ответ:
Ly3577
Ly3577
21.01.2021
Пусть x - розы, y - орхидеи. получаем систему уравнений
\left \{ {{x=4y} \atop {x=y+51}} \right.
вычитаем из первого уравнения второе
0=3y-51,
3y=51,
y=17, подарил 17 орхидей
x=4*17=68. подарил 68 роз
4,8(74 оценок)
Ответ:
89086443040
89086443040
21.01.2021
Валентин подарил 58 роз
4,6(86 оценок)
Открыть все ответы
Ответ:
anonimus8310
anonimus8310
21.01.2021
Решение:
Прежде чем вычислить сумму квадратов этих чисел,
найдём эти числа, для этого обозначим эти числа за (х) и (у),
тогда согласно условия задачи:
х+у=15   (1)
Средне-арифметическое этих двух чисел равно:
(х+у)/2
Средне геометрическое этих двух чисел равно:
√(х*у)
25% средне геометрического числа равно:
25% *√(ху) :100%=0,25*√(ху)=0,25√(ху)
Согласно условия задачи составим второе уравнение:
(х+у)/2 - √(ху)=0,25√(ху)
(х+у)/2=0,25√(ху)+√(ху)
(х+у)/2=1,25√(ху)
(х+у)=2*1,25√(ху)
х+у=2,5√(ху)   (2)
Решим получившуюся систему из двух уравнений:
х+у=15
х+у=2,5√(ху)
Из первого уравнения системы уравнений найдём значение (х)
х=15-у  -подставим значение (х) во второе уравнение
15-у+у=2,5√[(15-y)*y]
15=2,5√(15y-y²)  чтобы избавиться от иррациональности в правой части, возведём левую и правую части уравнения в квадрат:
225=6,25*(15у-у²)
225=93,75у-6,25у²
6,25у²-93,75у+225=0
у1,2=(93,75+-D)/2*6,25
D=√(93,75² -4*6,25*225)=√(8789,0625-5625)=√3164,0625=56.25
у1,2=(93,75+-56,25)/12,5
у1=(93,75+56,26)/12,5=150/12,5=12
у2=(93,75-56,25)/12,5=37,5/12,5=3
Подставим значения (у1) и (у2) в х=15-у
х1=15-12=3
х2=15-3=12
Из получившихся чисел можно сделать вывод, что эти два числа 12 и 3
Отсюда сумма квадратов этих чисел равна:
12²+3²=144+9=153

ответ: 153
4,7(87 оценок)
Ответ:
vladgas78
vladgas78
21.01.2021

Шаг 1

Поменяйте стороны местами, чтобы все переменные члены находились в левой части.

4x^{2}-3xy^{2}+2y^{2}-2x=z4x2−3xy2+2y2−2x=z

Шаг 2

Вычтите zz из обеих частей уравнения.

4x^{2}-3xy^{2}+2y^{2}-2x-z=04x2−3xy2+2y2−2x−z=0

Шаг 3

Объедините все члены, содержащие xx.

4x^{2}+\left(-3y^{2}-2\right)x+2y^{2}-z=04x2+(−3y2−2)x+2y2−z=0

Шаг 4

Данное уравнение имеет стандартный вид ax^{2}+bx+c=0ax2+bx+c=0. Подставьте 44 вместо aa, -3y^{2}-2−3y2−2 вместо bb и 2y^{2}-z2y2−z вместо cc в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}2a−b±b2−4ac.

x=\frac{-\left(-3y^{2}-2\right)±\sqrt{\left(-3y^{2}-2\right)^{2}-4\times 4\left(2y^{2}-z\right)}}{2\times 4}x=2×4−(−3y2−2)±(−3y2−2)2−4×4(2y2−z)

Шаг 5

Возведите -3y^{2}-2−3y2−2 в квадрат.

x=\frac{-\left(-3y^{2}-2\right)±\sqrt{\left(3y^{2}+2\right)^{2}-4\times 4\left(2y^{2}-z\right)}}{2\times 4}x=2×4−(−3y2−2)±(3y2+2)2−4×4(2y2−z)

Шаг 6

Умножьте -4−4 на 44.

x=\frac{-\left(-3y^{2}-2\right)±\sqrt{\left(3y^{2}+2\right)^{2}-16\left(2y^{2}-z\right)}}{2\times 4}x=2×4−(−3y2−2)±(3y2+2)2−16(2y2−z)

Шаг 7

Умножьте -16−16 на 2y^{2}-z2y2−z.

x=\frac{-\left(-3y^{2}-2\right)±\sqrt{\left(3y^{2}+2\right)^{2}+16z-32y^{2}}}{2\times 4}x=2×4−(−3y2−2)±(3y2+2)2+16z−32y2

Шаг 8

Прибавьте \left(3y^{2}+2\right)^{2}(3y2+2)2 к -32y^{2}+16z−32y2+16z.

x=\frac{-\left(-3y^{2}-2\right)±\sqrt{9y^{4}-20y^{2}+16z+4}}{2\times 4}x=2×4−(−3y2−2)±9y4−20y2+16z+4

Шаг 9

Число, противоположное -3y^{2}-2−3y2−2, равно 3y^{2}+23y2+2.

x=\frac{3y^{2}+2±\sqrt{9y^{4}-20y^{2}+16z+4}}{2\times 4}x=2×43y2+2±9y4−20y2+16z+4

Шаг 10

Умножьте 22 на 44.

x=\frac{3y^{2}+2±\sqrt{9y^{4}-20y^{2}+16z+4}}{8}x=83y2+2±9y4−20y2+16z+4

Шаг 11

Решите уравнение x=\frac{3y^{2}+2±\sqrt{9y^{4}-20y^{2}+16z+4}}{8}x=83y2+2±9y4−20y2+16z+4 при условии, что ±± — плюс. Прибавьте 3y^{2}+23y2+2 к \sqrt{4+16z-20y^{2}+9y^{4}}4+16z−20y2+9y4.

x=\frac{\sqrt{9y^{4}-20y^{2}+16z+4}+3y^{2}+2}{8}x=89y4−20y2+16z+4+3y2+2

Шаг 12

Разделите 3y^{2}+2+\sqrt{4+16z-20y^{2}+9y^{4}}3y2+2+4+16z−20y2+9y4 на 88.

x=\frac{\sqrt{9y^{4}-20y^{2}+16z+4}}{8}+\frac{3y^{2}}{8}+\frac{1}{4}x=89y4−20y2+16z+4+83y2+41

Шаг 13

Решите уравнение x=\frac{3y^{2}+2±\sqrt{9y^{4}-20y^{2}+16z+4}}{8}x=83y2+2±9y4−20y2+16z+4 при условии, что ±± — минус. Вычтите \sqrt{4+16z-20y^{2}+9y^{4}}4+16z−20y2+9y4 из 3y^{2}+23y2+2.

x=\frac{-\sqrt{9y^{4}-20y^{2}+16z+4}+3y^{2}+2}{8}x=8−9y4−20y2+16z+4+3y2+2

Шаг 14

Разделите 3y^{2}+2-\sqrt{4+16z-20y^{2}+9y^{4}}3y2+2−4+16z−20y2+9y4 на 88.

x=-\frac{\sqrt{9y^{4}-20y^{2}+16z+4}}{8}+\frac{3y^{2}}{8}+\frac{1}{4}x=−89y4−20y2+16z+4+83y2+41

Шаг 15

Уравнение решено.

x=\frac{\sqrt{9y^{4}-20y^{2}+16z+4}}{8}+\frac{3y^{2}}{8}+\frac{1}{4}x=89y4−20y2+16z+4+83y2+41 x=-\frac{\sqrt{9y^{4}-20y^{2}+16z+4}}{8}+\frac{3y^{2}}{8}+\frac{1}{4}x=−89y4−20y2+16z+4+83y2+41

4,5(26 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ