1) p1=0,6; p2=0,7. Вероятность промаха обоих (1-p1)*(1-p2). Вероятность попадания хотя бы одного 1-(1-p1)(1-p2)=1-0,4*0,3=0,88 2) найдем вероятность того что все 10 деталей годные. Благоприятных исходов "цэ из 90 по 10" - число сочетаний (буду писать С_90_10). Всего исходов С_100_10. Тогда искомая вероятность С_90_10/С_100_10. Вероятность что есть дефектная из 10: 1-С_90_10/С_100_10=1-(81*82*...*90)/(91*92*...*100) 3) p1=0,6; p2=0,7. Два варианта: 1 попал 2 мимо или наоборот. Получим p1*(1-p2)+p2(1-p1)=0,6*0,3+0,4*0,7=0,46
Пусть скорость течения реки равна х кмчас (скорость плота по течению реки), тогда скорость катера в стоячей воде равна 6х кмчас, против течения реки равна 6х-х=5х кмчас, за течением 6х+х=7х кмчас
пусть катер и плот встретились черз t часов, тогда до встречи он проплыл xt км, а катер проплыл 5xt км расстояние АВ равно xt+5xt=6xt км
назад катер движетс со скоростью 7x кмчас, а значит вернется в пункт В через 5xt:(7x)=5/7t часов за это время плот проплывет еще 5/7tx км, таким образом до пункта В ему останется проплыть 5xt-5/7xt=4 2/7 xt=30/7 xt
а в отношении ко всему пути это будет (30/7 xt):(6xt)=5/7 пути Ав ответ: 5/7
закончится вот