Радиусы ОВ и ОС перпендикулярны к касательным АВ и АС, тогда в прямоугольных треугольниках АОВ и АОС, ОВ = ОС = R = 8 см, гипотенуза ОА общая, а значит треугольники АОВ и АОС равны по катету и гипотенузе, а тогда угол ОАВ = ОАС = ВАС / 2 = 60 / 2 = 300.
Катет ОВ лежит против угла 300, тогда ОА = 2 * ОВ = 2 * 8 = 16 см.
По теореме Пифагора, АВ2 = ОА2 – ОВ2 = 256 – 64 = 192.
АВ = 8 * √3 см.
АС = АВ = 8 * √3 см.
ответ: Длина отрезков АВ и АС равна 8 * √3 см.
Пошаговое объяснение:
Вторую не знаю как решить
Б) -15-2(-4-х)=-15+8+2x=2x-7
В) -2(х+4)+10(t-2)=-2x-8+10t-20=-2x+10t-28
Г) 4(6-a)-7(b+9)=24-4a-7b-63=-4a-7b-39