Задача на арифметическую прогрессию: Sn = 210 тонн - сумма n членов прогрессии a₁ = 2 тонн -первый член арифметической прогрессии n = 14 - число членов арифметич. прогрессии an - энный член арифметич прогрессии a₉ = ? Sn = 1/2(a₁+ an)×n - используя эту формулу найдем a₁₄ 210 = 1/2(2+an)×14 an = 210×2÷14-2 an = 210÷7-2 an =28 an = a₁ + d(n-1) - используя эту формулу найдем d -разность арифметической прогрессии d =(an - a₁)÷(n-1) d =(28-2)÷(14-1) d = 26÷13 d = 2 a₉ = a₁ +d(n-1) - определим a₉ a₉ = 2 + 2 ×(9-1) а₉ = 18
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3
Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.
Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3 и, следовательно, AH=AO* sin угла AOH=√3/3
960/192=5м.
ответ: 5м