1) 120 = 2³ · 3 · 5; 60 = 2² · 3 · 5
НОК (120 и 60) = 2³ · 3 · 5 = 120 - наименьшее общее кратное
НОД (120 и 60) = 2² · 3 · 5 = 60 - наибольший общий делитель
2) 30 = 2 · 3 · 5; 75 = 3 · 5²
НОК (30 и 75) = 2 · 3 · 5² = 150 - наименьшее общее кратное
НОД (30 и 75) = 3 · 5 = 15 - наибольший общий делитель
3) 6 = 2 · 3; 72 = 2³ · 3²
НОК (6 и 72) = 2³ · 3² = 72 - наименьшее общее кратное
НОД (6 и 72) = 2 · 3 = 6 - наибольший общий делитель
4) 16 = 2⁴; 48 = 2⁴ · 3
НОК (16 и 48) = 2⁴ · 3 = 48 - наименьшее общее кратное
НОД (16 и 48) = 2⁴ = 16 - наибольший общий делитель
5) 121 = 11²; 99 = 3² · 11
НОК (121 и 99) = 3² · 11² = 1089 - наименьшее общее кратное
НОД (121 и 99) = 11 - наибольший общий делитель
6) 17 - простое число, поэтому
НОК (17 и 15) = 17 · 15 = 255 - наименьшее общее кратное
НОД (17 и 15) = 1 - наибольший общий делитель
Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
502-(217-х)=421
217-х=502-421
217-х=81
х=217-81
х=136