1) b = 36, b = 37 и b = 38. Чем больше числитель при одинаковом знаменателе, тем больше значение дроби.
2) Так как нет натуральных чисел для ответа на задачу в промежутке между дробями приведем дроби к большему общему знаменателю и поступим также, как в объяснении к 1 решению, т.е. выберем подходящий числитель:
5/11 = (5*6)/66 = 30/66 6/11 = (6*6)/66 = 36/66
b=31, b=32, b=33, b=34, b=35 - выбирайте любое значение b
Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха) , n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p*(1-p)=50*0,9=45. (50-10)/(45^0.5)>P>(50-7)/(45^0.5), то есть 6,41>P>5,963. Р=1/(6,28^0,5)интеграл в пределах от 5,963 до 6,41 exp(-x^2/2)=1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4* ско, поэтому значение вероятности и такое маленькое.
значит 120.000.000 × 120.000.000= 1.44Е16