Число игр, в которых участвовала команда, в любой момент находится в пределах от 0 до N-1. При этом не может так оказаться, что одна команда сыграла 0 матчей, а какая-то сыграла все N-1. Значит, всегда есть повторения, что является сюжетом известной задачи.
Рассмотрим N-1 команду кроме A. Число игр изменяется в тех же пределах, и значения 0 и N-1 по-прежнему несовместимы. Если все значения разные, то это или от 0 до N-2 включительно, либо от 1 до N-1.
В первом случае есть команда, которая ни с кем не играла. Если её исключить из рассмотрения, то кроме A останется N-2 команды со значениями от 1 до N-2. Тогда последняя из них играла со всеми, включая A. Если и эту команду исключить из рассмотрения, то помимо A останется N-3 команды со значениями от 0 до N-4, и с ними A играла 12 раз. Далее через два шага мы получим N-5 команд со значениями от 0 до N-6, с которыми A играла 11 раз, и так далее.
Получается, что при значениях игр команд от 0 до N-2k, команда A с ними провела 14-k встреч. Так мы дойдём до k=13, и окажется, что A играла одну встречу с N-25 командами, у которых значения лежат в пределах от 0 до N-26 включительно. Отсюда следует, что N=27 или N=28. Сами эти значения подходят, так как данная процедура может быть проделана в обратном порядке с получением расписания. При N>28 следующий шаг даёт противоречие: если команда A не играла ни с кем из оставшихся, то там не могло получиться попарно различных значений, если остались по крайней мере двое.
Во втором случае, при значениях от 1 до N-1, есть команда, игравшая со всеми. Тогда её, как и выше, исключаем. Получается, что A провела 12 встреч с командами, у которых количество игр принимает значения от 0 до N-3 (значение N-1 исчезло, а остальные уменьшились на 1). Видно, что при уменьшении на единицу числа игр A, правая граница значений для остальных команд уменьшается на 2. Значит, при уменьшении числа игр A ещё на 11 (оно станет равным 1), получатся границы от 0 до N-25, откуда следует, что N=26 или N=27, причём эти значения подходят.
Таким образом, в турнире могло участвовать 26, 27 или 28 команд; сумма этих значений равна 81
Пошаговое объяснение:
1.Перерисуйте в тетрадь рисунок 1. Проведите через точку С:
1) прямую а, параллельную прямой ;
2) прямую b, перпендикулярную прямой .
2. Начертите произвольный треугольник ABC.
Постройте фигуру, симметричную этому треугольнику относительно точки А.
3. Отметьте на координатной плоскости точки А(–1;4) и В(–4;–2). Проведите отрезок АВ.
1) Найдите координаты точки пересечения отрезка АВ с осью абсцисс.
2) Постройте отрезок, симметричный отрезку АВ относительно оси ординат, и найдите координаты концов полученного отрезка.
4. Турист вышел из базового лагеря и через некоторое время вернулся назад. На рисунке 2 изображен график движения туриста.
На каком расстоянии от лагеря был турист через 4 ч после начала движения?
Сколько времени турист затратил на остановку?
Через сколько часов после начала движения турист был на расстоянии 12 км от лагеря?
С какой скоростью турист шел до остановки?
5. Даны координаты трех вершин прямоугольника ABCD: А (–2;–3), В (–2;5) и С(4;5).
Начертите этот прямоугольник.
Найдите координаты вершины D.
Найдите координаты точки пересечения диагоналей прямоугольника.
2)96-32=64 т вывозит за 1 день сверх нормы
3)64*7=448 т вывез сверх нормы за 7 дней