Пошаговое объяснение:
Скорость лодки в стоячей воде 12 км/ч. Скорость по теч. 12+x км/ч, против теч. 12-х км/ч.
Движение против теч. Заняло 25/(12-x) ч. Движение по теч. Заняло 25/(12+x) ч.
И это на 10 ч меньше.
25/(12-x) - 25/(12+x) = 10
25(12+x) - 25(12-x) = 10(12+x)(12-x)
25*12 + 25x - 25*12 + 25x = 10(144 - x^2)
Приводим подобные и переносим все налево.
50x - 1440 + 10x^2 = 0
x^2 + 5x - 144 = 0
D = 5^2 - 4*(-144) = 25 + 576 = 601
x1 = (-5 -√601)/2 < 0 - не подходит
x2 = (-5 + √601)/2 ≈ 9,76 км/ч
Кажется, в задаче опечатка. Не должно здесь быть иррационального ответа.
Из Москвы в 8 часов утра отправился поезд со скоростью 58 км/ч. В 11ч. утра вслед за ним отправился другой поезд со скоростью 64 км/ч. На каком
расстоянии эти поезда будут друг от друга в 3 ч. дня ?
Решение задачи поэтапно:
1 этап)Объяснение
3 часа дня значит 15 часов
2 этап)Решение
1) 15 - 8 = 7 (ч) - время в пути первого поезда;
2) 58 * 7 = 406 (км) - проедет первый поезд за 7 часов;
3) 15 - 11 = 4 (ч) - время в пути второго поезда;
4) 64 * 4 = 256 (км) - проедет второй поезд за 4 часа;
5) 406 - 256 = 150 (км) - расстояние между поездами в 3 часа дня.
Окончательный ответ: 150 км.
Рассмотрим разные случаи для модуля.
При x < 1 под модулем будет (x - 1)(x - 4) > 0
f(x) = x^2 - 3x + 2 - (x^2 - 5x + 4) - a = -3x + 2 + 5x - 4 - a = 2x - 2 - a
Это прямая, она пересекает ось абсцисс в точке
2x - 2 - a = 0
x = (2 + a)/2 < 1
2 + a < 2
a < 0
Значит, при a < 0 и x < 1 получится прямая f(x) = 2x - 2 - a
Она пересекает ось Ох в точке x1 = (2 + a)/2 = 1 + a/2
При x > 4 под модулем будет (x - 1)(x - 4) > 0
f(x) = x^2 - 3x + 2 - (x^2 - 5x + 4) - a = -3x + 2 + 5x - 4 - a = 2x - 2 - a
Это прямая, она пересекает ось абсцисс в точке
2x - 2 - a = 0
x = (2 + a)/2 > 4
2 + a > 8
a > 6
Значит, при a > 6 и x > 4 получится прямая f(x) = 2x - 2 - a
Она пересекает ось Ох в точке x2 = (2 + a)/2 = 1 + a/2
Значения a < 0 и a > 6 не пересекаются, значит, из этих двух прямых только одна пересекает ось абсцисс. Это 1 пересечение.
При 1 < x < 4 под модулем будет (x - 1)(x - 4) < 0
f(x) = x^2-3x+2 + (x^2-5x+4) - a = 2x^2-3x-5x+2+4-a = 2x^2 - 8x + 6 - a
Это парабола. Если она будет пересекать ось Ох в 2 точках,
то всего будет 3 пересечения, что нам и надо.
Значит, это уравнение должно иметь 2 корня.
2x^2 - 8x + (6-a) = 0
D = 8^2 - 4*2(6-a) = 64 - 8(6-a) > 0
8 - (6 - a) > 0
2 + a > 0
a > -2
Итак, получили:
1) Прямая f(x) = 2x - 2 - a пересекает ось Ох при a > 0 в точке x < 1
и при a > 6 в точке x > 4
2) Парабола f(x) = 2x^2 - 8x + 6 - a пересекает ось Ох при a > -2
Три точки пересечения будет при a ∈ (-2; 0)