Задача 1. 1) 3/5 * 1/3 = 1/5 - часть мальчиков, которые играют в футбол (сократили 3 в числителе одной дроби и 3 в знаменателе другой) ответ: 1/5 часть всех детей лагеря играет в футбол. Проверка. В летнем лагере 30 детей (целое). 1) 30 * 3/5 = 30 : 5 * 3 = 18 детей - мальчики (часть целого) 2) 18 * 1/3 = 18 : 3 = 6 мальчиков играют в футбол (часть мальчиков) 3) 6/30 = 1/5 - часть детей лагеря, которые играют в футбол (дробь 6/30 сократили на 6)
Задача 2. Примем весь путь за единицу (целое) 1) 1 - 7/20 = 20/20 - 7/20 = 13/20 - оставшаяся часть пути; 2) 13/20 * 8/13 = 8/20 - часть пути, которую проделали путешественники во второй день; 3) 1 - (7/20 + 8/20) = 1 - 15/20 = 5/20 - часть пути, которую проделали путешественники в третий день; 4) 7/20 - 5/20 = 2/20 = 1/10 - часть пути, равная 36 км Находим целое по его части: 36 * 10 = 360 км - расстояние между городами. ответ: 360 км. Проверяем: 1) 360 * 7/20 = 360 : 20 * 7 = 126 км - в первый день; 2) 8/13 * (360 - 126) = 8/13 * 234 = 234 : 13 * 8 = 144 км - во второй день; 3) 360 * 5/20 = 360 : 20 * 5 = 90 км - в третий день; 126 + 144 + 90 = 360 км - расстояние между городами. 126 - 90 = 36 км - на столько меньше проехали в третий день, чем в первый.
УМНОЖЕНИЕ 1. Произведение двух чисел не изменяется при перестановке множителей. Это свойство умножения называют ПЕРЕМЕСТИТЕЛЬНЫМ. С букв его записывают так: a+b=b+a 2. Чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель. Это свойство умножения называют сочетательным. С букв его записывают так: a*(b*c)=(a*b)*c 3.Сумма n слагаемых, каждое из которых равно 1, равна n. Поэтому верно равенство 1*n=n 4. Сумма n слагаемых, каждое из которых равно нулю. Поэтому верно равенство 0*n=0 5.Чтобы переместительное свойство умножения было верно при n = 1 и n = 0, условились, что m*1=m и m*0=0. 6 Перед буквенными множителями обычно не пишут знак умножения: вместо 8 * x пишут 8x, вместо a*b пишут ab. 7. Опускают знак умножения и перд скобками. Например, вместо 2*(a+b) пишут 2(a+b), а вместо (x+2) * (y+3) пишут (x+2)(y+3) Вместо (ab)c пишут abc. 8.Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо.
1. Пусть вс-х, ав- у, ас- z.
2. Перепишем условие:
х+у=21
х+z=24
y+z=23.
Это система уравнений.
3. Решим систему методом постановки.
Из второго уравнения : х=24-z.
Из третьего уравнения : у=23-z.
Подставляем полученное в первое уравнение вместо х и у. Получим (23-z)+(24-z)=21
23-z+24-z=21
-2z=-26
z=13.
4. Подставляем значение z во второе уравнение: х+13=24
Х=11.
5. Подставляем значение z в третье уравнение: у+13=23
У=10.
6. Проверка :
11+10=21 - верно
11+13=24- верно
10+13=23- верно.
ответ: 10,11,13.