Пусть
грн стоит один килограмм апельсинов, а
грн — один килограмм лимонов. Тогда 5 кг апельсинов будут стоить
грн, а 4 кг лимонов —
грн, что вместе составляет 22 грн, то есть
. Также 6 кг апельсинов будут стоить
грн, а 2 кг лимонов —
грн, что вместе составляет 18 грн, то есть
.
Имеем систему из двух линейных уравнений:

Домножим второе уравнение на 2:

Вычтем из второго уравнения первое:


Тогда 
Таким образом, 2 грн стоит один килограмм апельсинов и 3 грн стоит один килограмм лимонов.
ответ: 2 грн и 3 грн.

Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является
.
1)
— общее решение соответствующего линейного однородного дифференциального уравнения:

Применим метод Эйлера: сделаем замену
где
— некоторая постоянная. Тогда 
Получили характеристическое уравнение:

Разделим обе части уравнения на
:


Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:

Тогда 
Воспользуемся формулой Эйлера: 
Фундаментальная система решений:
— функции линейно независимые, поскольку 
Общее решение: 
2)
— частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции
.
Здесь
, причем
, поэтому частное решение имеет вид
, где
— неизвестный коэффициент, который нужно найти.
Тогда
и
подставим в исходное ЛНДР и найдем
:

Разделим обе части уравнения на 


Таким образом, частное решение: 
Тогда общим решением исходного ЛНДР с постоянными коэффициентами:

ответ: 
Тогда можно составить 4 уравнения
К+М+Д=78 (все девочки кроме Вари собрали 78 орехов);
В+М+Д=73;
В+К+Д=74;
В+К+М=69;
Теперь можно сложить получившееся урвнения, получаем:
3(В+К+М+Д)=294
В+К+М+Д=98
получилось, что вместе они нашли 98 орехов;
тогда Варя нашла 98-78=20 орехов
Кристина нашла 98-73=25 орехов
Маша нашла 98-74=24 ореха
Даша нашла 98-69=29 орехов