Рассмотрим один из равных треугольников, разделённых высотой. один катет = 12 (это высота) второй катет обозначим 3 Х гипотенузу обозначим 5Х (это сторона большого треугольника) уравнение: 25 Х квадрат = 144 + (3Х) в квадрате - по теореме Пифагора. Решаем: 16 Х квадрат = 144 Х квадрат = 9 Х = 3, отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 3 х 5 = 15 катет маленького треугольника, он же 1/2 основания большого треугольника 3 х 3 = 9, а всё основание равно 9 х 2 = 18 Искомая площадь треугольника равна 18 х 12 / 2 = 108
Конечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр. Например, 1,3181818...; короче эту дробь записывают так: 1,3(18), то есть помещают период в скобки (и говорят: «18 в периоде») . П. д. называется чистой, если период начинается сразу после запятой, например 2(71) = 2,7171...,и смешанной, если после запятой имеются цифры, предшествующие периоду, например 1,3(18). Роль П. д. в арифметике обусловлена тем, что при представлении рациональных чисел, то есть обыкновенных (простых) дробей, десятичными дробями, всегда получаются либо конечные, либо периодические дроби. Точнее: конечная десятичная дробь получается в том случае, когда знаменатель несократимой простой дроби не содержит других простых множителей, кроме 2 и 5; во всех других случаях получается П. д. , и притом чистая, если знаменатель данной несократимой дроби вовсе не содержит множителей 2 и 5, и смешанная, если хотя бы один из этих множителей содержится в знаменателе. Всякая П. д. может быть обращена в простую дробь (то есть она равна некоторому рациональному числу) . Чистая П. д. равна простой дроби, числителем которой служит период, а знаменатель изображается цифрой 9, написанной столько раз, сколько цифр в периоде; при обращении в простую дробь смешанной П. д. числителем служит разность между числом, изображаемым цифрами, предшествующими второму периоду, и числом, изображаемым цифрами, предшествующими первому периоду; для составления знаменателя надо написать цифру 9 столько раз, сколько цифр в периоде, и приписать справа столько нулей, сколько цифр до периода. Эти правила предполагают, что данная П. д. правильная, то есть не содержит целых единиц; в противном случае целая часть учитывается особо.
24n+80=170000/10
24n+80=17000
24n=17000-80
24n=16920
n=16920/24
n=705
ответ: n=705