Г) 8.
Пошаговое объяснение:
Для того, чтобы число было "высотным", средняя цифра должна быть больше суммы крайних цифр. Для этого крайние цифры должны быть как можно меньше, а средняя - как можно больше.
Самая маленькая цифра - 0, но с нуля число начинаться не может (если число не равно нулю), значит берём следующую цифру - 1. самая большая цирфа - 9.
Составим такие числа:
190, 191, 192, 193, 194, 195, 196, 197.
Дальше продолжать мы не можем, так как 1 + 8 = 9, а 9 = 9 и т. д.
Соответственно, наибольшее количество последовательных чисел, которые являются высотными - 8.
Відповідь:
Нехай, AB і AC - вектори. Вирахуємо їхні координати:
AB = B - A = (-3; 8) - (5; -7) = (-3 - 5; 8 - (-7)) = (-8; 15); AB = (-8; 15)
AC = C - A = (-10; -15) - (5; -7) = (-10 - 5; -15 - (-7)) = (-15; 8); AC = (-15; 8)
Тепер обчислимо їхню довжину за формулою |AB| = √(a₁² + a₂²):
AB = √((-8)² + 15²) = √289 = 17;
AC = √((-15)² + 8²) = √289 = 17;
Отже, AB = AC, а ΔABC - рівнобедренний з основою BC. В рівнобедренному трикутнику кути при основі рівні, тому ∠B = ∠C. Доведено.
Пояснення:
Задача - довести, що кути рівні. Якщо помістити вказані точки на площину і з'єднати, стає зрозуміло, що трикутник рівнобедрений, при чому кути B і С - кути при основі. Тобто тепер задача зводиться до доведення, що ΔABC - рівнобедренний. Для того щоб це довести, необхідно довести, що AB = AC трикутника рівні. Так як нам відомі координати цих точок, ми можемо обчислити довжину векторів AB і AC, що ми і робимо.