М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
danilstal14
danilstal14
04.10.2020 07:11 •  Математика

Используя таблицу степеней , вычеслите : а) 4 " 5 б)5 " 3 в) 3 " 4 г) 4 " 3 д) 2 " 4 е)3 " 2.

👇
Ответ:
lpozzz
lpozzz
04.10.2020
4^{5}=1024
5^{3}=125
3^{4} =81
4^{3}=64
2^{4} =16
3^{2} =9
4,4(98 оценок)
Ответ:
danasveshnikova
danasveshnikova
04.10.2020
А)1024
б)125
в)81
г)64
д)16
е)9
4,4(76 оценок)
Открыть все ответы
Ответ:
viktoriabuble
viktoriabuble
04.10.2020
ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия,  в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации ,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Геодезия

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Древняя астрономия

Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей.



Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры. Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin угла 3. По оценке Аристарха, эта величина лежит в промежутке от 1/20 до 1/18, то есть расстояние до Солнца в 20 раз больше, чем до Луны; на самом деле Солнце почти в 400 раз дальше, чем Луна, ошибка возникла из-за неточности в измерении угла.

 Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.



В общем, можно сказать, что тригонометрия использовалась для:

·         точного определения времени суток;

·         вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны;

·         нахождения географических координат текущего места;

·         вычисления расстояния между городами с известными географическими координатами.

Гномон— древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),



позволяющий по наименьшей

длине его тени (в полдень) определить угловую высоту солнца. 

Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)

Архитектура 

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений

рисунков проходило именно с геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось

множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения 
4,6(75 оценок)
Ответ:
007239
007239
04.10.2020
Говорят, что о культуре человека можно судить в том числе и по тому, как он соблюдает (или не соблюдает) правила личной гигиены. Эти правила каждая, уважающая себя и своих детей, мать прививает своим отпрыскам с раннего детства. Именно эти знания уже взрослым людям сохранять своё здоровье и работо кроме того, правила личной гигиены — это отличная профилактика большинства инфекционных заболеваний.

Главными составляющими гигиены являются в первую очередь уход за кожей, уход за волосами, уход за зубами, а также гигиена личной обуви и одежды.
4,8(10 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ