Перепишем уравнение в другом виде:
169,96
= 60,7
2,88 : (5,4х - 1,67)
Это выражение дает нам возможность упростить его еще:
169,96 2,88
: = 60,7
1 5,4х - 1,67
Воспользовавшись правилом деления дробей, получаем:
169,96 5,4х - 1,67
* = 60,7
1 2,88
Сокращаем числитель первой и знаменатель второй дроби. В результате имеем:
59,01 * (5,4х - 1,67) = 60,7
Умножаем 59,01 на каждое число в скобке, в результате имеем:
318,65х - 98,55 = 60,7. Отсюда
318,65х = 60,7 + 98,55
318,65х = 159,25
х = 159,25/318,65
х=0,5
Пошаговое объяснение:
Формула объема шарового слоя:
V = (1/2)*π*H(R²+r²+H²/3), где H - высота шарового слоя, R и r - радиусы оснований шарового слоя. В нашем случае шаровой слой расположен по одну сторону от центра шара. Найдем высоту слоя. Она равна разности расстояний от центра шара до плоскостей оснований. Расстояние до дальней плоскости найдем из прямоугольного треугольника с гипотенузой - радиус шара = 5 см и одним из катетов - радиус основания = 3 см. Треугольник Пифагоров (отношение сторон 3:4:5), значит расстояние до дальней плоскости равно h1= 4см. Точно так же найдем расстояние до ближней к центру шара плоскости (основания слоя) h2 = 3см. (из Пифагорова треугольника с гипотенузой 5см и катетом 4см). Разность расстояний - высота слоя =4-3 = 1 см.
Тогда по формуле имеем:
V=(1/2)*π*1*(16+9+1/3) = π*(76)/6 = (12и2/3
Подробнее - на -
-2z-2z=-4
-4z=-4
z=1