М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kamakina
kamakina
08.04.2020 17:29 •  Математика

156-96: (12: 4): 2 и 156-96: 2: (4: 2) кто может напишите всё !

👇
Ответ:
156-96:(12:4):2
1)12:4=3
2)96:3=32
3)32:2=16
3)156-16=140

156-96:2:(4:2)
1)4:2=2
2)96:2=48
3)48:2=24
4)156-24=132
4,6(71 оценок)
Открыть все ответы
Ответ:
IKarapuzikI
IKarapuzikI
08.04.2020

это решение системы

х²-5х+6>0; х²-5х+6=0; по теореме, обратной теореме ВИЕТА, находим корни уравнения х=2;х=3, значит, х²-5х+6=(х-2)(х-3), тогда

(х-2)(х-3)>0

(2-x)/(x-3)≥0⇒(x-2)/(x-3)≤0

второе неравенство равносильно системе

(x-2)(x-3)≤0;

х≠3

Т.о., для решения вопроса области определения данной функции надо решить такую систему

(х-2)(х-3)>0

(x-2)(x-3)≤0;

х≠3

как видим, одновременно произведение (х-2)(х-3) и быть большим или равным нулю и быть меньшим нуля при х≠3, быть не может. поэтому данная функция не определена ни при каких значениях х.

4,8(42 оценок)
Ответ:
tofik4
tofik4
08.04.2020

Пусть на плоскости изобразили конечное количество точек и всевозможные середины отрезков с вершинами в данных точках.

Ясно, что раз изначальных точек и середин конечное количество, то всевозможные отрезки с вершинами в данных точках и серединах будут иметь конечное количество значений углов с горизонтом в данной плоскости. Благодаря этому всегда можно провести в данной плоскости такую прямую a, которая образует с горизонтом такой угол x, чтобы угол равный 90° - x отличался от всевозможных углов, которые образуют отрезки с концами в данных точках и серединах.  

Таким образом, если спроецировать все точки и середины на данную прямую, то количество полученных различных проекций будет совпадать с количеством всех различных точек и середин в данной плоскости, ведь из-за отличия угла 90° - x данной прямой со всеми остальными углами не существует такой пары точек, что образовывала бы отрезок, который перпендикулярен прямой a, иначе говоря, никакие две точки не спроецируютcя в одну, при этом из теоремы Фалеса следует, что проекции всех середин являются серединами всех отрезков в вершинах полученных проекций точек.

Как видим, мы смогли свести 2-d задачу к 1-d, то есть осталось доказать, что если на некоторой произвольной прямой обозначить n точек, то получим не менее 2n - 3 середин в отрезках в данных точках.

Покажем, что при добавлении на прямую с самого правого края некоторой новой точки, количество середин увеличится как минимум на 2.

Действительно, добавив новую точку ak+1 cправа от самой правой точки ak, получим новую, cамую правую середину b2 отрезка akak+1 (cмотрите рисунок).

Cередину отрезка ak-1ak обозначим b0, а середину отрезка ak-1ak+1 как b1. Очевидно, что  ak-1ak < ak-1ak+1, то есть середина b1 будет правее середины b0, по тем же самым рассуждениям середина b1 будет левее середины b2.

Как видим, имеем 3 различные не совпадающие друг с другом середины b0,b1,b2. Средина b0 была до добавления справа точки ak+1, а значит с добавлением новой точки ak+1 прибавилось как минимум две новые середины b1 и b2. Все остальные середины находятся левее точки b0 и не могут совпадать с данными тремя точками.

Очевидно, что между двумя точками ровно одна середина, тогда учитывая вышеописанный принцип из n точек можно получить как минимум:  1 + 2(n-2) = 2n-3 различных середин, ведь при прибавлении справа новой точки получаем как минимум две новые середины.

Можно добиться того, чтобы можно было получить ровно 2n-3 середин, для этого все расстояния между соседними точками должны  быть одинаковыми (разбиение отрезка на равные части). В этом случае некоторые середины будут совпадать со всеми не крайними точками, которых n-2, а все остальные середины будут серединами отрезков в соседних точках, которых n-1. Всего: n-2 + n-1 = 2n-3 середины.

Что и требовалось доказать.


6. На плоскости отмечено и точек. Докажите, что среди середин всевозможных отрезков с концами в этих
4,5(50 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ