На 2 и 3 вопрос немного не понятно условие, тут либо говорится об остановке именно в самом конце пути( как я и взял) либо же о стоянке, которая примерно на 3/4 пути машин, так что если можно так посчитать задание не совсем корректное
1) 150км - автобус
170км - автомобиль
2) V = S/t
V(1) = 200 / 5 = 40(км/ч) - скорость автобуса
V(2) = 200 / 4 = 50(км/ч) - скорость автомобиля
3) 200 км автобус
200км автомобиль
4) 5ч - автобус
4ч- автомобиль
5) 2 3/5 - 2 = 3/5 ч = 3*60/5 = 3 * 12 = 36 (м) - автомобиль
3 3/5 - 2 2/5 = 1 1/5 = 6/5 Ч = 6 * 60 /5 = 6 * 12 = 72 (м) - автобус
6) V = S/t
V(1) = (200 - 50)/(5 - 3 3/5) = 50 / ( 1 2/5) = 50 : 7/2 = 50 * 2/7 = 100/7 (км/ч) - скорость автобуса
V(2) = (200 - 160) : 3/5 = 40 * 5/3 = 200/3(км/ч) - скорость автомобиля
Пошаговое объяснение:
Из условия нам дано, что в парке растут берёзы, дубы и клены. Дубов в 3 раза больше, чем берёз, а клёнов в 4 раза больше берёз.
Обозначим через X количество берёз:
Берёзы - X.
Дубы - 3X.
Клёны - 4X.
В условии сказано, что в парке всего 368 деревьев растёт. Значит сумма всех членов равна:
X + 3X + 4X = 368.
Решим уравнение:
X + 3X + 4X = 368;
8X = 368;
X = 46.
Через X обозначали количество берёз, значит количество деревьев - 46.
Найдем количество дубов:
1) 3 * 46 = 138 дубов растет в парке.
2) 4 * 46 = 184 кленов растет в парке.
ответ: В парке растет: 46 берез; 138 дубов; 184 кленов.
Пошаговое объяснение:
х² + 4х - 3 = 0
D = b² - 4ac
D = 16 + 12 = 28
√D = 2√7
x1,2 = -4 ± 2√7/2
x1 = -2 + √7
x2 = -2 - √7
Шукані розв'язки визначають межі інтегрування
S = интеграл от (х² + 4х - 3) в пределах от -2 -√7 до -2 + √7 = (х³/3 + 2х² - 3х) | верхний предел 2 + √7; нижний 2 - √7 = (2 + √7)³/3 + 2(2 + √7)² - 3(2 + √7) - (2 - √7)³ - 2(2 - √7)² + 3(2 - √7) = (2 + √7 - 2 + √7)( (2 + √7)² + (2+√7)(2-√7) + (2 - √7)²) + 2(2 + √7 + 2 - √7)(2 +√7 - 2 + √7) - 12 = 2√7(8√7 + 4 - 7) + 16√7 - 12 = 112 - - 6√7 + 16√7 - 12 = 100 + 10√7 = 10(10 + √7) кв. ед
ответ: 10(10 + √7) кв.ед